Contribución del banco de semillas del suelo a la restauración de agroecosistemas y fragmentos de bosques del Espinal (Córdoba)

Autores

DOI:

https://doi.org/10.31055/1851.2372.v59.n2.43133

Palavras-chave:

cambio de uso del suelo, regeneración, sucesión secundaria, bosque seco, centro de Argentina.

Resumo

Introducción y objetivos: El cambio de uso del suelo más significativo a nivel mundial es la transformación de ecosistemas nativos en agroecosistemas, causando pérdida de biodiversidad y servicios ecosistémicos. Potencialmente, estos sistemas degradados podrían recuperarse a partir del banco de semillas del suelo. Nuestro objetivo fue evaluar la riqueza y densidad del banco de semillas en relación con un gradiente de complejidad estructural en agroecosistemas y fragmentos de bosques del Espinal, así como su potencial para regenerar especies nativas comparando su composición de especies con la vegetación establecida del sistema de referencia.
M&M: A partir de variables estructurales de vegetación y de suelo de parcelas con distintos usos de suelo, se construyó un gradiente de complejidad estructural sobre el cual se analizaron las variables del banco de semillas.
Resultados: El banco de semillas de la pastura registró la mayor riqueza, seguida por el de bosques. La mayor densidad del banco de semillas y similitud con la vegetación establecida del sistema de referencia la presentaron los bosques. Predominaron las especies herbáceas en todas las parcelas. A excepción de Celtis tala, no se observaron semillas de especies leñosas dominantes del sistema de referencia.
Conclusiones: El banco de semillas de la pastura puede contribuir en las primeras etapas de restauración, especialmente si se busca reducir los costos asociados a este proceso. Sin embargo, su aporte para recuperar los bosques nativos del Espinal en el corto o mediano plazo es limitado debido a su baja similitud con el sistema referencia.

Referências

BASKIN, C. C. & J. M. BASKIN. 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. 2nd ed. Academic Press, San Diego. https://doi.org/10.1016/C2013-0-00597-X

BELLINDER, R. B., H. R. DILLARD & D. A. SHAH. 2004. Weed seedbank community responses to crop rotation schemes. Crop Prot. 23: 95–101. https://doi.org/10.1016/S0261-2194(03)00174-1

BOSSUYT, B. & O. HONNAY. 2008. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 19: 875-884. https://doi.org/10.3170/2008-8-18462

BRAY, J. R. & J. T. CURTIS. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 326-349.

BRYSON, C. T. & G. D. WILLS. 1985. Susceptibility of bermudagrass (Cynodon dactylon) biotypes to several herbicides. Weed Sci. 33: 848-852.

BUHLER, D. D., K. A. KOHLER & R. L. THOMPSON. 2001. Weed seed bank dynamics during a five-year crop rotation. Weed Technol. 15: 70-176. https://doi. org/10.1614/0890-037X(2001)015[0170:WSBDD A]2.0.CO;2

CABIDO, M., S. R. ZEBALLOS, M. ZAK, M. L. CARRANZA … & A. T. ACOSTA. 2018. Native woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Appl. Veg. Sci. 21: 298-311. https://doi.org/10.1111/avsc.12369

CABRERA, A. L. 1976. Regiones fitogeográficas argentinas. En: KUGLER, W. F. (ed.), Enciclopedia Argentina de Agricultura y Jardinería, pp. 1-85. Acme, Buenos Aires.

CARO, J. A. & M. M. CECONELLO. 2020. Principales iniciativas vinculadas al desarrollo rural en Argentina (1995-2015). Una revisión de características y alcances. Breves Contrib. Inst. Estud. Geogr 31: 110-117.

CAVERS, P. B. & D. L. BENOIT. 1989. Seed banks in arable land. En: LECK, M. A., V. T. PARKER & R. L. SIMPSON (eds.), Ecology of Soil Seedbanks, pp. 309-328. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-440405-2.50019-1

CLEWELL, A. F. & J. ARONSON. 2007. Ecological restoration: principles, values, and structure of an emerging profession. 2nd ed. Island Press. Washington, DC. https://doi.org/10.5822/978-1-59726-323-8

CRAMER, V. A., R. J. HOBBS & R. J. STANDISH. 2008. What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol. Evol. 23: 104-112. https://doi.org/10.1016/j. tree.2007.10.005

CSONTOS, P. 2007. Seed banks: ecological definitions and sampling considerations. Community Ecol. 8: 75-85. https://doi.org/10.1556/comec.8.2007.1.10

DALLING, J. W. 2002. Ecología de semillas. En: M. R. GUARIGUATA & G. H. KATTAN (eds.), Ecología y conservación de bosques neotropicales, pp. 345- 375. Ediciones LUR, Cartago.

DE VILLIERS, A. J., M. W. VAN ROOYEN & G. K. THERON. 2003. Similarity between the soil seed bank and the standing vegetation in the Strandveld Succulent Karoo, South Africa. Land Degrad. Dev. 14: 527-540. https://doi.org/10.1002/ldr.582

DEMAIO, P., U. O. KARLIN & M. MEDINA. 2015. Árboles nativos de Argentina. Tomo 1: Centro y Cuyo. Primera edición. Ecoval editorial, Buenos Aires.

DEVLAEMINCK, R., B. BOSSUYT & M. HERMY. 2005. Inflow of seeds through the forest edge: evidence from seed bank and vegetation patterns. Plant Ecol. 176: 1-17. https://doi.org/10.1007/s11258-004-0008-2

DÖLLE, M. & W. SCHMIDT. 2009. The relationship between soil seed bank, above‐ground vegetation and disturbance intensity on old‐field successional permanent plots. Appl. Veg. Sci. 12: 415-428. https://doi.org/10.1111/j.1654-109X.2009.01036.x

DONELAN, M. & K. THOMPSON. 1980. Distribution of buried viable seeds along a successional series. Biol. Conserv. 17: 297-311. https://doi.org/10.1016/0006-3207(80)90029-4

DOUCET, C., S. E. WEAVER, A. S. HAMILL & J. ZHANG. 1999. Separating the effects of crop rotation from weed management on weed density and diversity. Weed Sci. 47: 729-735. https://doi.org/10.1017/S0043174500091402

ERNST, R. D., C. E. SUÁREZ, H. D. ESTELRICH, E. F. MORICI & M. A. CAMPOS. 2020. Fachinales de Prosopis caldenia intervenidos por distintos manejos: Análisis desde su banco de semillas. Ecol. Austral 30: 380-392. https://doi.org/10.25260/EA.20.30.3.0.989

ESKELINEN, A., M. T. JESSEN, H. A. BAHAMONDE, J. D. BAKKER ... & L. L. SULLIVAN. 2023. Herbivory and nutrients shape grassland soil seed banks. Nat. Commun. 14: 3949. https://doi.org/10.1038/s41467-023-39677-x

ETCHEPARE, M. A. & S. I. BOCCANELLI. 2007. Análisis del banco de semillas y su relación con la vegetación emergente en una clausura de la llanura pampeana. Ecol. Austral 17: 159-166.

FELEDYN SZEWCZYK, B. J. SMAGACZ, C. A. KWIATKOWSKI, E. HARASIM & A. WOŹNIAK. 2020. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agric. 10: 1-20. https://doi.org/10.3390/agriculture10050186

FENNER, M. & K. THOMPSON. 2005. The ecology of seeds. First edition. Cambridge University Press. Cambridge.

FERRERAS, A., P. MARCORA, P. VENIER & G. FUNES. 2018. Different strategies for breaking physical seed dormancy in field conditions in two fruit morphs of Vachellia caven (Fabaceae). Seed Sci. Res. 28: 8-15. https://doi.org/10.1017/S096025851800003X

FERRI, R., M. CEBALLOS, N. VISCHI, E. HEREDIA & A. OGGERO. 2009. Banco de semillas de un relicto de Espinal (Córdoba, Argentina). IHERINGIA, Sér. Bot. 64: 93-100.

FLORENTINE, S., MILBERG, P. & M. WESTBROOKE. 2023. Potential contributions of the soil seed bank and seed rain for accelerating the restoration of riparian catchments in Australia. Glob. Ecol. Conserv. 47: e02645. https://doi.org/10.1016/j.gecco.2023.e02645

FRECHERO, J. I. 2013. Extractivismo en la economía argentina. Categorías, etapas históricas y presente. Estud. Crit. Desarro. 3: 45-82. https://doi.org/10.35533/ecd.0304.jif

FUNES, G., S. BASCONCELO, S. DÍAZ & M. CABIDO. 2001. Edaphic patchiness influences grassland regeneration from the soil seed‐bank in mountain grasslands of central Argentina. Ecol. Austral 26: 205-212. https://doi.org/10.1046/j.1442-9993.2001.01102.x

FUNES, G., S. BASCONCELO, S. DÍAZ & M. CABIDO. 2003. Seed bank dynamics in tall‐tussock grasslands along an altitudinal gradient. J. Veg. Sci. 14: 253-258. https://doi.org/10.1111/j.1654-1103.2003.tb02150.x FUNES, G., S. DÍAZ & P. VENIER. 2009. La temperatura como principal determinante de la germinación en especies del Chaco seco de Argentina. Ecol. Austral 19: 129-138.

GARACHANA, D. M., R. ARAGÓN & G. BALDI. 2018. Estructura espacial de remanentes de bosque nativo en el Chaco Seco y el Espinal. Ecol. Austral 28: 480- 607. https://doi.org/10.25260/EA.18.28.3.0.767

GIORGIS M. A. & P. A. TECCO. 2014. Árboles y arbustos invasores de la Provincia de Córdoba (Argentina): una contribución a la sistematización de bases de datos globales. Bol. Soc. Argent. Bot. 49: 581-603. https://doi.org/10.31055/1851.2372.v49.n4.9991

GRIME, J. P. 1979. Plant strategies, vegetation processes and ecosystem properties. John Wiley & Sons, Ltd., Nueva York. GUIDA JOHNSON, B. & G. A. ZULETA. 2013. Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agric. Ecosyst. Environ. 181: 31-40. https://doi.org/10.1016/j.agee.2013.09.002

HARING, S. C. & M. L. FLESSNER. 2018. Improving soil seed bank management. Pest Manag. Sci. 74: 2412-2418. https://doi.org/10.1002/ps.5068

HAUSSMANN, N. S., C. DELPORT, V. KAKEMBO, K. K. MASHIANE & P. C. LE ROUX. 2019. Restoration potential of invaded abandoned agricultural fields: what does the seed bank tell us? Restor. Ecol. 27: 813-820. https://doi.org/10.1111/rec.12923

HEAP, I. 2014. Herbicide Resistant Weeds. En: PIMENTEL D. & R. PESHIN (eds.), Integrated Pest Management, pp. 281-301. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7796-5_12

HEREDIA PINOS, M. R., G. A. MONTERO, E. RAJASEKHAR, D. E. FACCINI ... & R. PRASAD. 2023. Post-dispersal predation of weed seeds in a pampas agroecosystem, Argentina. South Afr. J. Bot. 156: 1-12. https://doi.org/10.1016/j.sajb.2023.02.038

HOPFENSPERGER, K. N. 2007. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116: 1438-1448. https://doi.org/10.1111/j.0030-1299.2007.15818.x

HOROWITZ, M. 1972. Spatial growth of Cynodon dactylon (L.) Pers. Weed Res. 12: 373-383. https://doi.org/10.1111/j.1365-3180.1972.tb01231.x

HOSSEINI, P., H. KARIMI, S. BABAEI, H. R. MASHHADI & M. OVEISI. 2014. Weed seed bank as affected by crop rotation and disturbance. Crop Prot. 64: 1-6. https://doi.org/10.1016/j.cropro.2014.05.022

HOUSPANOSSIAN, J., R. GIMÉNEZ, J. I. WHITWORTH-HULSE, M. D. NOSETTO ... & E. G. JOBBÁGY. 2023. Agricultural expansion raises groundwater and increases flooding in the South American plains. Sci. 380: 1344-1348. https://doi.org/10.1126/science.add5462

IDECOR. 2020. Infraestructura de Datos Espaciales de la Provincia de Córdoba. Ministerio de Finanzas de la Provincia de Córdoba. https://www.idecor.gob.ar/ conoce-las-principales-variables-economicas-porclase-de-uso-del-suelo/

JOBBÁGY, E. G., M. D. NOSETTO, C. S. SANTONI & G. BALDI. 2008. El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecol. Austral 18: 305--322.

LEE, L. J. & J. NGIM. 2000. A first report of glyphosate‐resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Manag. Sci. 56: 336-339. https://doi.org/10.1002/(SICI)1526- 4998(200004)56:43.0.CO;2-8

LEKBERG, Y., C. A. ARNILLAS, E. T. BORER, L. S. BULLINGTON … & J. A. HENNING. 2021. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 12: 3484. https://doi.org/10.1038/s41467-021-23605-y

LEWIS, J. P., S. NOETINGER, D. E. PRADO & I. M. BARBERIS. 2009. Woody vegetation structure and composition of the last relicts of Espinal vegetation in subtropical Argentina. Biodivers. Conserv. 18: 3615-3628. https://doi.org/10.1007/s10531-009-9665-8

LIPOMA, M. L., V. FORTUNATO, L. ENRICO & S. DÍAZ. 2020. Where does the forest come back from? Soil and litter seed banks and the juvenile bank as sources of vegetation resilience in a semiarid Neotropical forest. J. Veg. Sci. 31: 1017- 1027. https://doi.org/10.1111/jvs.12842

LOYDI, A. 2019. Effects of grazing exclusion on vegetation and seed bank composition in a mesic mountain grassland in Argentina. Plant Ecol. Divers. 12: 127-138. https://doi.org/10.1080/17550874.2019.1593544

LUO, C., X. GUO, C. FENG & C. XIAO. 2023. Soil seed bank responses to anthropogenic disturbances and its vegetation restoration potential in the arid mining area. Ecol. Indic. 154: 110549. https://doi.org/10.1016/j.ecolind.2023.110549

MA, M., C. C. BASKIN, W. LI, Y. ZHAO … & G. DU. 2019. Seed banks trigger ecological resilience in subalpine meadows abandoned after arable farming on the Tibetan Plateau. Ecol. Appl. 29: 1-13. https://doi.org/10.1002/eap.1959

MA, M., S. L. COLLINS, Z. RATAJCZAK & G. DU. 2021. Soil seed banks, alternative stable state theory, and ecosystem resilience. Biosci. 71: 697- 707. https://doi.org/10.1093/biosci/biab011

MANLEY, B. S., H. P. WILSON & T. E. HINES. 2002. Management programs and crop rotations influence populations of annual grass weeds and yellow nutsedge. Weed Sci. 50: 112-119. https://doi. org/10.1614/0043-1745(2002)050[0112:MPACRI] 2.0.CO;2

MAZA VILLALOBOS, S., C. LEMUS HERRERA & M. MARTÍNEZ RAMOS. 2011. Successional trends in soil seed banks of abandoned pastures of a Neotropical dry region. J. Trop. Ecol. 27: 35-49. https://doi.org/10.1017/S0266467410000611

MCDONALD, A. W., J. P. BAKKER & K. VEGELIN. 1996. Seed bank classification and its importance for the restoration of species‐rich flood‐meadows. J. Veg. Sci. 7: 157-164. https://doi.org/10.2307/3236315

MCDONALD T., G. D. GANN, J. JONSON & K. W. DIXON. 2016. International standards for the practice of ecological restoration – Including principles and key concepts. First edition. Society for Ecological Restoration, Washington D.C.

MEAVE, J. A., C. FLORES RODRÍGUEZ, E. A. PÉREZ GARCÍA & M. A. ROMERO ROMERO. 2012. Edaphic and seasonal heterogeneity of seed banks in agricultural fields of a tropical dry forest region in southern Mexico. Bot. Sci. 90: 313-329. https://doi.org/10.17129/botsci.393

MEFTAUL, I. M., K. VENKATESWARLU, R. DHARMARAJAN, P. ANNAMALAI … & M. MEGHARAJ. 2020. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? Environ. Pollut. 263: 1-18. https://doi.org/10.1016/j.envpol.2020.114372

MIDDLETON, B. A. 2003. Soil seed banks and the potential restoration of forested wetlands after farming. J. Appl. Ecol. 40: 1025-1034. https://doi.org/10.1111/j.1365-2664.2003.00866.x MILBERG, P. 1995. Soil seed bank after eighteen years of succession from grassland to forest. Oikos 72: 3-13. https://doi.org/10.2307/3546031

NIU, F., L. HUO, Z. WANG, J. LIU … & B. XU. 2022. Effects of nitrogen addition & watering on soil seed bank germination in a semiarid grassland on the Loess Plateau of China. Land Degrad. Dev. 34: 142- 155. https://doi.org/10.1002/ldr.4449

NOUTCHEU, R., F. M. OLIVEIRA, R. WIRTH, M. TABARELLI & I. R. LEAL. 2023. Coppicing as a driver of plant resprouting and the regeneration of a Caatinga dry forest. For. Ecol. Manag. 529: 120736. http://dx.doi.org/10.2139/ssrn.4200135

OKSANEN, J., G. L. SIMPSON, F. G. BLANCHET, R. KINDT … & J. WEEDON. 2022. Package vegan: Community Ecology Package. R package version 2.6-2. Disponible en: https://CRAN.R-project.org/ package=vegan [Acceso: Agosto 2023].

OWEN, M. D. & I. A. ZELAYA. 2005. Herbicide‐ resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61: 301-311. https://doi.org/10.1002/ps.1015

OYARZABAL, M., J. CLAVIJO, L. OAKLEY, F. BIGANZOLI ... & R. J. LEÓN. 2018. Unidades de vegetación de la Argentina. Ecol. Austral 28: 40-63. https://doi.org/10.25260/EA.18.28.1.0.399

PAN, J., L. ZHANG, L. WANG & S. FU. 2020. Effects of long-term fertilization treatments on the weed seed bank in a wheat-soybean rotation system. Glob. Ecol. Conserv. 21: 1-8. https://doi.org/10.1016/j.gecco.2019.e00870

PERUZZO, P. J., A. A. PORTA & A. E. RONCO. 2008. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ. Pollut. 156: 61-66. https://doi.org/10.1016/j.envpol.2008.01.015

POZNER, R. 2015. Cucurbitaceae. En: ANTON, A. M. & F. O. ZULOAGA (dir.), Flora Argentina [online]. Disponible en: www.floraargentina.edu.ar [Acceso: 13 noviembre 2023].

R CORE TEAM. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en: https:// www.R-project.org/. [Acceso: Julio 2023].

RAGO, M. M., M. F. URRETAVIZCAYA, I. A. ORELLANA & G. E. DEFOSSÉ. 2020. Strategies to persist in the community: Soil seed bank and above‐ ground vegetation in Patagonian pine plantations. Appl. Veg. Sci. 23: 254-265. https://doi.org/10.1111/avsc.12482

ROBERTS, H. A. & F. G. STOKES. 1965. Studies on the weeds of vegetable crops. V. Final observations on an experiment with different primary cultivations. J. Appl. Ecol. 2: 307-315. https://doi.org/10.2307/2401482

ROBERTS, H. A. 1981. Seed Banks in Soil. Adv. Appl. Biol. 6: 1-55.

ROBERTSON, G. P., D. C. COLEMAN, C. S. BLEDSOE & P. SOLLINS. 1999. Standard soil methods for long-term ecological research. Oxford University Press, Nueva York.

RSTUDIO TEAM. 2022. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA. Disponible en: http://www.rstudio. com/. [Acceso: Julio 2023].

SATORRE, E. H., B. ELBA, M. T. MAS, S. A. SUÁREZ … & A. M. VERDÚ. 2020. Crop rotation effects on weed communities of soybean (Glycine max L. Merr.) agricultural fields of the Flat Inland Pampa. Crop Prot. 130: 1-7. https://doi.org/10.1016/j.cropro.2019.105068

SAVADOGO P., L. SANOU, S. D. DAYAMBA, F. BOGNOUNOU & A. THIOMBIANO. 2017. Relationships between soil seed banks and aboveground vegetation along a disturbance gradient in the W National Park trans-boundary biosphere reserve, West Africa. J. Plant Ecol. 10: 349-363. https://doi.org/10.1093/jpe/rtw025

SERVICIO METEOROLÓGICO NACIONAL. Atlas Climático Argentina. 1991-2020. Disponible en: https://www.smn.gob.ar/clima/atlasclimatico [Acceso: 13 noviembre 2023].

SHRESTHA, A., S. Z. KNEZEVIC, R. C. ROY, B. R. BALL COELHO & C. J. SWANTON. 2002. Effect of tillage, cover crop and crop rotation on the composition of weed flora in a sandy soil. Weed Res. 42: 76-87. https://doi.org/10.1046/j.1365-3180.2002.00264.x

SILVA, G. H. M. & G. E. OVERBECK. 2020. Soil seed bank in a subtropical grassland under different grazing intensities. Acta Bot. bras. 34: 360-370. https://doi.org/10.1590/0102-33062019abb0297

SIMPSON, R. L., M. A. LECK & V. T. PARKER. 1989. Seed banks: general concepts and methodological issues. En: LECK, M. A., V. T. PARKER & R. L. SIMPSON (eds.), Ecology of soil seed banks, pp. 3-8. Academic press inc., San Diego, California, USA.

SOUZA DE PAULA, A., J. C. SFAIR, D. P. F. TRINDADE, K. F. RITO … & M. F. BARROS. 2023. The role of seed rain and soil seed bank in the regeneration of a Caatinga dry forest following slash-and-burn agriculture. J. Arid Environ. 211: 104948. https://doi.org/10.1016/j.jaridenv.2023.104948

SUDING, K. N. & R. J. HOBBS. 2009. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24: 271-279. https://doi.org/10.1016/j.tree.2008.11.012

TESSEMA, Z. K., W. F. DE BOER, R. M. BAARS & H. H. PRINS. 2012. Influence of grazing on soil seed banks determines the restoration potential of aboveground vegetation in a semi‐arid savanna of Ethiopia. Biotropica 44: 211-219. https://doi.org/10.1111/j.1744-7429.2011.00780.x

THOMPSON, K. 1978. The occurrence of buried viable seeds in relation to environmental gradients. J. Biogeogr. 5: 425-430. https://doi.org/10.2307/3038032

VÁZQUEZ GARCÍA, J. G., R. ALCÁNTARA DE LA CRUZ, A. M. ROJANO DELGADO, C. PALMA BAUTISTA … & R. DE PRADO. 2021. Multiple herbicide resistance evolution: The case of Eleusine indica in Brazil. J. Agric. Food Chem. 69: 1197-1205. https://doi.org/10.1021/acs.jafc.0c03999

VÉLEZ, S., N. P. CHACOFF & C. M. CAMPOS. 2018. Pre-dispersal seed loss in two Prosopis species (Fabacea: Mimosoidea) from the Monte Desert, Argentina. Ecol. Austral 28: 361-373. https://doi.org/10.25260/EA.18.28.2.0.576

VENIER, P., M. CABIDO & G. FUNES. 2017. Germination characteristics in five coexisting neotropical species of Acacia in seasonally dry Chaco forests from Argentina. Plant Spec. Biol. 32: 134-146. https://doi.org/10.1111/1442-1984.12134

VERESOGLOU, S. D., E. K. BARTO, G. MENEXES & M. C. RILLIG. 2013. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol. 62: 961-969. https://doi.org/10.1111/ppa.12014

VIGLIZZO, E. & E. G. JOBBÁGY. 2010. Expansión de la frontera agropecuaria en Argentina y su impacto ecológico-ambiental. Ediciones Instituto Nacional de Tecnología Agropecuaria, Buenos Aires.

WAGNER, M. & N. MITSCHUNAS. 2007. Fungal effects on seed bank persistence & potential applications in weed biocontrol: a review. Basic Appl. Ecol. 9: 191- 203. https://doi.org/10.1016/j.baae.2007.02.003

WALKLEY, A. & I. A. BLACK. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29-38.

WANG, N., X. HE, F. ZHAO, D. WANG & J. JIAO. 2020. Soil seed bank in different vegetation types in the Loess Plateau region and its role in vegetation restoration. Restor. Ecol. 28: 5-12. https://doi.org/10.1111/rec.13169

WEERASINGHE, M., M. S. ASHTON, E. R. HOOPER & B. M. SINGHAKUMARA. 2018. Floristics of soil seed banks on agricultural and disturbed land cleared of tropical forests. Restor. Ecol. 27: 138- 147. https://doi.org/10.1111/rec.12711

WICKHAM, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Second edition. Springer, Verlag, Nueva York.

WILLIAMS LINERA, G., M. BONILLA MOHENO & F. LÓPEZ BARRERA. 2016. Tropical cloud forest recovery: the role of seed banks in pastures dominated by an exotic grass. New For. 47: 481- 496. https://doi.org/10.1007/s11056-016-9526-8

YANG, X., C. C. BASKIN, J. M. BASKIN, R. J. PAKEMAN … & J. H. CORNELISSEN. 2021. Global patterns of potential future plant diversity hidden in soil seed banks. Nat. Commun. 12: 1-8. https://doi.org/10.1038/s41467-021-27379-1

ZEBALLOS, S. R., M. A. GIORGIS, M. R. CABIDO, A. T. R. ACOSTA … & J. J. CANTERO. 2020. The lowland seasonally dry subtropical forests in central Argentina: vegetation types and a call for conservation. Veg. Clasif. Surv. 1: 8

Publicado

2024-06-27

Edição

Seção

Ecologia

Como Citar

“Contribución Del Banco De Semillas Del Suelo a La restauración De Agroecosistemas Y Fragmentos De Bosques Del Espinal (Córdoba)”. 2024. Boletín De La Sociedad Argentina De Botánica 59 (2). https://doi.org/10.31055/1851.2372.v59.n2.43133.

Artigos Semelhantes

261-270 de 590

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.