Gene pool variability and germinative parameters in natural populations of Enterolobium contortisiliquum (Leguminosae) from Northeastern Argentina

Authors

  • Carla Gabriela Martinotto Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Posadas (3300) Misiones, Argentina. Dirección actual: Instituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina. https://orcid.org/0000-0001-7645-3055
  • María Eugenia Barrandeguy Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Posadas (3300) Misiones, Argentina; Instituto de Biología Subtropical (UNaM – CONICET); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET - Argentina) https://orcid.org/0000-0003-2200-9404
  • Alejandra Lorena Goncalves Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Posadas (3300) Misiones, Argentina; Instituto de Biología Subtropical (UNaM – CONICET); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET - Argentina) https://orcid.org/0000-0001-5723-8325
  • María Victoria García Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Posadas (3300) Misiones, Argentina; Instituto de Biología Subtropical (UNaM – CONICET); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET - Argentina) https://orcid.org/0000-0003-0612-4365

DOI:

https://doi.org/10.31055/1851.2372.v57.n4.38230

Keywords:

Genetic structure, genetic variability, germination, microsatellites, pollen donors, timbó

Abstract

Background and aims: Enterolobium contortisiliquum is a South American native forest tree. Gene pool variability and germinate variables were estimated in populations from Northeastern Argentina in order to analyze the relationship among gene flow, mating system, and dispersal.

M&M: Individuals from Eldorado and Ituzaingó populations and seeds from Ituzaingó were genotyped by means of five and four nuclear microsatellite loci, respectively. Germinate variables were determined while genetic diversity and population structure were characterized. Indirect gene flow and pollen-mediated gene flow were estimated. Nuclear genetic variability differentiation at locus and gene pool levels was determined.

Results: The analyzed populations showed high genetic diversity. At least one or two donors of pollen trees by fruit were detected. Also, the absence of population genetic structure as a consequence of high pollen and seed-mediated gene flow was detected. The seeds showed the highest genetic differentiation at locus and gene pool levels.

Conclusions: The high gene flow levels detected contribute to maintaining the gene pool variability while the high genetic diversity, the absence of both inbreeding and population genetic structure together with pollen-mediated gene flow support the allogamy as the main mating system in the analyzed populations.

References

ABRAHAM DE NOIR, F., S. BRAVO & R. ABDALA. 2002. Mecanismos de dispersión de algunas especies de leñosas nativas del chaco occidental y serrano. Quebracho 9: 140-150.

ALEXANDRE, R. S., F. G. GONÇALVES, A. P. ROCHA, M. P. DE ARRUDA, & E. DE QUEIROZ LEMES. 2009. Tratamentos físicos e químicos na superação de dormência em sementes de Enterolobium contortisiliquum (Vell.) Morong. Rev. Bras. Cienc. Agrar. 4: 156-159. https://doi.org/10.5039/agraria.v4i2a6

ANDRIANOELINA, O., B. FAVREAU, L. RAMAMONJISOA & J. M. BOUVET. 2009. Small effect of fragmentation on the genetic diversity of Dalbergia monticola, an endangered tree species of the eastern forest of Madagascar, detected by chloroplast and nuclear microsatellites. Ann. Bot. 104: 1231-1242. https://doi.org/10.1093/aob/mcp231

BALKENHOL, N., S. A. CUSHMAN, A. T. STORFER, L. P. WAITS. 2016. Landscape Genetics: Concepts, Methods, Applications. 1st ed. John Wiley and Sons Ltd, Chichester. https://doi.org/10.1002/9781118525258.ch01

BARRETTO, S. S. B. & R. A. FERREIRA. 2011. Morphological aspects of fruits, seeds and seedlings of the Leguminosae Mimosoideae species: Anadenanthera colubrina (Vellozo) Brenan and Enterolobium contortisiliquum (Vellozo) Morong. Rev. Bras. Sementes 33: 223-232. https://doi.org/10.1590/S0101-31222011000200004

BERJAK, P, & N. W. PAMMENTER. 2002. Orthodox and recalcitrant seeds. En VOZZO J. A. (ed.) Tropical tree seed manual, pp 137-147. DCUSDA Forest Service, Washington.

BREED, M. F., OTTEWELL, K. M., GARDNER, M. G., MARKLUND, M. H., DORMONTT, E. E., & A. J. LOWE. 2015. Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics. Heredity 115(2): 108-114. https://doi.org/10.1038/hdy.2013.48

CABRERA, A. L. 1971. Fitogeografía de la república Argentina. Bol. Soc. Argent. Bot. 14: 1-42.

CABRERA, A. L. 1976. Regiones fitogeográficas argentinas. Enciclopedia argentina de agricultura y jardinería. 2da ed. ACME S.A.C.I., Buenos Aires.

CHEN, C., E. DURAND, F. FORBES & O. FRANÇOIS. 2007. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol. Ecol. Notes 7: 747-756. https://doi.org/10.1111/j.1471-8286.2007.01769.x

CRUZ-SILVA, C. T. A., & A. P. M. ROSA. 2011. Tratamentos para superação da dormência em sementes de orelha-de-negro (Enterolobium contortisiliquum (Vell.) Morong). Varia Sci. Agrár. 2(2): 79-90.

DURAND, E., C. CHEN & O. FRANÇOIS. 2009. TESS Version 2.3 Reference Manual. Disponible en: http://membres-timc.imag.fr/Olivier.Francois/tess.html [Acceso: 11 November 2022].

EXCOFFIER, L. & H. E. L. LISCHER. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

GENTRY, A. H. 1983. Dispersal ecology and diversity in neotropical forest communities. En K. KUBITZKI (ed.). Dispersal and Distribution: An International Symposium, pp. 303-314. Verlag Paul Parey, Berlin.

GILLET, E. 2010. GSED Genetic Structures from Electrophoresis Version 3.0 Data User’s Manual. Abt. Forstgenetik und Forstpflanzenzüchtung, Universität Göttingen, Göttingen.

GILLET, E., D. GÖMÖRY & L. PAULE. 2005. Measuring genetic variation within and among populations at marker loci. En GEBUREK, T. & J. TUROK (eds.) Conservation and Management of forest genetic resource in Europe, pp 237–270. Arbora Publishers, Zvolen.

GODOY, J. A. & P. JORDANO. 2001. Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Mol. Ecol. 10: 2275-2283. https://doi.org/10.1046/j.0962-1083.2001.01342.x

GONCALVES, A. L., M. E. BARRANDEGUY & M. V. GARCÍA. 2013. Método económico de genotipificación por fluorescencia de SSRs en Anadenanthera colubrina var. cebil. Actas del XLII Congreso Argentino de Genética. BAG, J. basic appl. genet. 24(1): 107.

GONCALVES, A. L., M. V. GARCÍA, M. E. BARRANDEGUY, S. C. GONZÁLEZ-MARTÍNEZ & M. HEUERTZ. 2022. Spatial genetic structure and mating system in forest tree populations from seasonally dry tropical forests: a review. Tree Genet. Genomes 18: 1-16. https://doi.org/10.1007/s11295-022-01550-1

GREGORIUS, H. R. & J. H. ROBERDS. 1986. Measurement of genetical differentiation among subpopulations. Theor. Appl. Genet. 71: 826-834. https://doi.org/10.1007/BF00276425

GREGORIUS, H. R. 1984. Measurement of genetic differentiation in plant populations. En GREGORIUS, H.R (ed.) Population Genetics in Forestry, pp. 276-285. Springer-Verlag, Berlín. https://doi.org/10.1007/978-3-642-48125-3_19

HARTL, D. L. & A. G. CLARK. 2007. Principles of population genetics. 4th ed. Sinauer Associates, Sunderland.

HATTEMER, H. H. 2005. On the appropriate size of forest genetic resources. En GEBUREK T, TUROK J (eds.) Conservation and Management of forest genetic resource in Europe, pp. 413-436. Arbora Publishers, Zvolen.

HOC, P. S. 2005. Inga MILL J. F. En: ANTON, A. M. & ZULOAGA F. O. (eds.) Flora Fanerogámica Argentina, fasc. 93, pp. 14-19. Córdoba: IMBIV (CONICET), Programa PROFLORA.

HOC, P. S., C. FLORES, E. LOZANO & A. ZAPATER. 2015. Preliminary studies on the reproductive biology of Enterolobium contortisiliquum. Res. Plant Biol. 5: 14-18.

HUNTER, R. J. 1989. Seed dispersal and germination of Enterolobium cyclocarpum (Jacq.) Griseb. (Leguminosae: Mimosoideae): Are megafauna necessary? J. Biogeogr. 16(4): 369-378. https://doi.org/10.2307/2845228

IMBERT, E. & F. LEFÈVRE. 2003. Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system. J. Ecol. 91(3): 447-456. https://doi.org/10.1046/j.1365-2745.2003.00772.x

LE CORRE, V. & A. KREMER. 1998. Cumulative effects of founding events during colonisation on genetic diversity and differentiation in an island and stepping‐stone model. J. Evol. Biol. 11: 495-512. https://doi.org/10.1046/j.1420-9101.1998.11040495.x

LOZANO, E. C., M. A. ZAPATER, C. MAMANI, C. B. FLORES, M. N. GIL & S. S. SÜHRING. 2016. Efecto de pretratamientos en semillas de Enterolobium contortisiliquum (Fabaceae) de la selva pedemontana argentina. Bol. Soc. Argent. Bot. 51(1): 79-87. https://doi.org/10.31055/1851.2372.v51.n1.14414

LOZANO‐ISLA, F., O. E. BENITES‐ALFARO & M. F. POMPELLI. 2019. GerminaR: An R package for germination analysis with the interactive web application “GerminaQuant for R”. Ecol. Res. 34: 339-346. https://doi.org/10.1111/1440-1703.1275

MANEL, S., M. K. SCHWARTZ, G. LUIKART & P. TABERLET. 2003. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18: 189-197. https://doi.org/10.1016/S0169-5347(03)00008-9

MOREIRA, P. A., S. A. S. SOUZA, E. A. OLIVEIRA, N. H. ARAÚJO, G. W. FERNANDES & D. A. OLIVIERA. 2012. Charaterization of nine tranferred SSR markers in the tropical tree species Enterolobium contortisiliquum (Fabaceae). Genet. Mol. Res. 11: 2338-2342. https://doi.org/10.4238/2012.August.17.11

MOREIRA, P., M. M. BRANDÃO, N. H. DE ARAUJO, D. A. DE OLIVEIRA & G. W. FERNANDES. 2015. Genetic diversity and structure of the tree Enterolobium contortisiliquum (Fabaceae) associated with remnants of a seasonally dry tropical forest. Flora 210: 40-46. https://doi.org/10.1016/j.flora.2014.10.005

MOREIRA, P.A, F. DE SIQUEIRA NEVES & J.A. LOBO. 2021. Consequences of tropical dry forest conversion on diaspore fate of Enterolobium contortisiliquum (Fabaceae). Plant Ecol. 222, 525–535. https://doi.org/10.1007/s11258-021-01124-6

MORELLO, J. & J. ADÁMOLI. 1974. Las grandes unidades de vegetación y ambiente del Chaco argentino. Parte II. Provincia del Chaco. Serie Fitogeográfica del INTA, Buenos Aires.

NEI, M. 1987. Genet. Sel. Evol. Columbia University Press, New York.

PEAKALL, R. & P.E. SMOUSE 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537-2539. https://doi.org/10.1093/bioinformatics/bts460

PETERS, M.B., C. HAGEN, D. W. TRAPNELL, J. L.HAMRICK, O. ROCHA, P. E. SMOUSE & T. C. GLENN. 2008. Isolation and characterization of microsatellite loci in the Guanacaste tree, Enterolobium cyclocarpum. Mol. Ecol. Resour. 8: 129-131. https://doi.org/10.1111/j.1471-8286.2007.01896.x

PRADO, D. E. 1993. What is the Gran Chaco vegetation in South America? II. A redefinition. Contribution to the study of flora and vegetation of the Chaco. VII. Candollea 48: 615-629. https://doi.org/10.1017/S096042860000041X

PRADO, D. E. 2000. Seasonally Dry Tropical Forest of tropical South America: From forgotten ecosystems to a new phytogeographic unit. Edinburgh J. Bot. 57(03): 437-461.

PRITCHARD, J. K., M. STEPHENS & P. DONNELLY. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. https://doi.org/10.1093/genetics/155.2.945

ROCHA, O. J. & G. AGUILAR (2001a). Reproductive biology of the dry forest tree Enterolobium cyclocarpum (Guanacaste) in Costa Rica: a comparison between trees left in pastures and trees in continuous forest. Am. J. Bot. 88(9): 1607-1614. https://doi.org/10.2307/3558405

ROCHA, O. J. & G. AGUILAR. 2001b. Variation in the breeding behavior of the dry forest tree Enterolobium cyclocarpum (Guanacaste) in Costa Rica. Am. J. Bot. 88: 1600-1606. https://doi.org/10.2307/3558404

ROUSSET, F. 2008. Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

SALAZAR, R. 2000. Manejo de semillas de 100 especies forestales de América Latina. Proyecto de Semillas Forestales/Danida Forest Seed Centre. CATIE, Turrialba, Costa Rica.

SCHUELKE, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18: 233. https://doi.org/10.1038/72708

SLATKIN, M. 1993. Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47: 264–279. https://doi.org/10.1111/j.1558-5646.1993.tb01215.x

SORK, V. L., & SMOUSE, P. E. 2006. Genetic analysis of landscape connectivity in tree populations. Landsc. Ecol. 21: 821-836. https://doi.org/10.1007/s10980-005-5415-9

STEWART, C. N. & L. EXCOFFIER. 1996. Assessing population genetic structure and variability with RAPD data: Application to Vaccinium macrocarpa (American cranberry). J. Evol. Biol. 9: 153-171. https://doi.org/10.1046/j.1420-9101.1996.9020153.x

SZPIECH, Z.A., M. JAKOBSSON & N.A. ROSENBERG. 2008. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24: 2498-2504. https://doi.org/10.1093/bioinformatics/btn478

TOMMASI, F., C. PACIOLLA & O. ARRIGONI. 1999. The ascorbate system in recalcitrant and orthodox seeds. Physiol. Plant. 105: 193-198. https://doi.org/10.1034/j.1399-3054.1999.105202.x

TORTORELLI, L.A. 2009. Maderas y bosques argentinos. Buenos Aires, Argentina. Orientación Gráfica Editora.

WRIGHT, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x

Published

2022-12-28

Issue

Section

Genetics & Evolution

How to Cite

“Gene Pool Variability and Germinative Parameters in Natural Populations of Enterolobium Contortisiliquum (Leguminosae) from Northeastern Argentina”. 2022. Boletín De La Sociedad Argentina De Botánica (Journal of the Argentine Botanical Society 57 (4). https://doi.org/10.31055/1851.2372.v57.n4.38230.

Similar Articles

1-10 of 562

You may also start an advanced similarity search for this article.