Molecular cytogenetics reveals an uncommon structural and numerical chromosomal heteromorphism in Zephyranthes brachyandra (Amaryllidaceae)

Authors

DOI:

https://doi.org/10.31055/1851.2372.v57.n1.34304

Keywords:

CMA/DAPI banding, cytotaxonomy, FISH, monotrisomy, rDNA, telomeric DNA

Abstract

Background and aims: Zephyranthes brachyandra belongs to a tribe of ornamental Amaryllidaceae native of South America, whose genera circumscription and phylogenetic relationships are still unclear. Cytologically, Z. brachyandra is a tetraploid whose chromosomes are of similar size and morphology, hindering the identification of its 2n = 24 chromosomes. The aim of this study was to investigate the stability of the many CMA+ and DAPI+ bands and the occurrence of B chromosomes by a cytomolecular approach.

 M&M: For this investigation we conducted a cytomolecular analysis with CMA/DAPI staining and fluorescence in situ hybridization with 5S and 35S rDNA probes, and the TTTAGGG telomeric probe.

Results: In the present work, a cytomolecular analysis of Z. brachyandra, revealed a large and variable number of CMA+ and DAPI+ heterochromatic bands and 5S and 35S rDNA sites, and a regular distribution of the TTTAGGG telomeric sequences. In addition, one individual was monotrisomic with 2n = 24, and another one had a B chromosome. Both numerical and structural chromosome alterations were clearly characterized by CMA/DAPI bands and rDNA sites.

Conclusions: Comparing the present data with the cytological data for other species of Zephyranthes, it becomes clear that a cytomolecular approach is fundamental to the understanding of the chromosome variation and cytotaxonomy of the group.

References

BARROS E SILVA, A. E. & M. GUERRA. 2010. The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech. Histochem. 85: 115–125. https://doi.org/10.3109/10520290903149596

BRADHAM, P. 1983. Evolution in a stable chromosome system. In: P.E. BRADHAM & M.D. BENNET (Eds). George Allen & Unwin (Publishers), Kew Chromosome Conference II, pp. 251-260. London.

BRIGHTON, C. A. 1977. Cytological problems in the genus Crocus (Iridaceae): II. Crocus Cancellatus Aggregate. Kew Bulletin 32: 33-45. https://doi.org/10.2307/4117257

CARVALHO A., M. DELGADO, A. BARÃO, M. FRESCATADA, E. RIBEIRO, C. S. PIKAARD, W. VIEGAS & N. NEVES. 2010. Chromosome and DNA methylation dynamics during meiosis in the autotetraploid Arabidopsis arenosa. Sex. Plant. Reprod. 23:29-37. https://doi.org/10.1007/s00497-009-0115-2

CHALUP, L., S. S. SAMOLUK, V. S. NEFFA & G. SEIJO. 2015. Karyotype characterization and evolution in South American species of Lathyrus (Notolathyrus, Leguminosae) evidenced by heterochromatin and rDNA mapping. J. Plant Res. 128: 893–908. https://doi.org/10.1007/s10265-015-0756-1

CHESTER, M., J. P. GALLAGHER, V. V. SYMONDS, A. V. C. SILVA, E. V. MAVRODIEV, A. R. LEITGH, P. S. SOLTIS & D. E. SOLTIS. 2012. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc. Natl. Acad. Sci. 109: 1176–1181. https://doi.org/10.1073/pnas.1112041109

CUADRADO, A. & N. JOUVE. 2010. Chromosomal detection of Simple Sequence Repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 119: 495–503. https://doi.org/10.1007/s00412-010-0273-x

DAVIÑA, J. R. 2001. Estudios citogenéticos en algunos géneros argentinos de Amaryllidaceae. Doctoral thesis, Universidade Nacional de Córdoba, Córdoba, Argentina.

DAVIÑA, J. R. & A. I. HONFI. 2018. IAPT chromosome data 28 [extended online version]. In: MARHOLD K. AND KUČERA J. (Eds.). Taxon. 67: E1–E46. https://doi.org/10.12705/676.39

DENG, X., Y. SHA, Z. LV, Y. WU, A. ZHANG, F. WANG & B. LIU. 2018. The capacity to buffer and sustain imbalanced D-subgenome chromosomes by the BBAA component of hexaploid wheat is an evolved dominant trait. Front. Plant Sci. 9: 1–12. https://doi.org/10.3389/fpls.2018.01149

FELIX, W. J. P., J. H. A. DUTILH, N. F. M., ANDREA A. F. & LEONARDO P. F. 2008. Intrapopulational chromosome number variation in Zephyranthes sylvatica Baker (Amaryllidaceae: Hippeastreae) from Northeast Brazil. Rev. Bras. Bot. 31: 371–75. https://doi.org/10.1590/S0100-84042008000200020

FELIX, W. J. P., L. P. FELIX, N. F. MELO, M. B. M. OLIVEIRA, J. H. A. DUTILH & R. CARVALHO. 2011a. Karyotype variability in species of the genus Zephyranthes Herb. (Amaryllidaceae–Hippeastreae). Plant Syst. Evol. 294: 263. https://doi.org/10.1007/s00606-011-0467-6

FELIX, W. J. P., L. P. FELIX, N. F. MELO, J. H. A. DUTILH & R. CARVALHO. 2011b. Cytogenetics of Amaryllidaceae species: heterochromatin evolution in different ploidy levels. Plant Syst. Evol. 292: 215–221. https://doi.org/10.1007/s00606-011-0418-2

GAIERO, P., C. MAZZELLA, M. VAIO, A. E. BARROS E SILVA, F. F. SANTIÑAQUE, B. LÓPEZ-CARRO, G. A. FOLLE & M. GUERRA. 2012. An unusually high heterochromatin content and large genome size in the palm tree Trithrinax campestris (Arecaceae). Aust. J. Bot. 60: 378. http://dx.doi.org/10.1071/BT12029

GARCÍA N., A. W. MEEROW, S. ARROYO-LEUENBERGER, R. S. OLIVEIRA, J. H. DUTILH, P. S. SOLTIS & W. S. JUDD. 2019. Generic classification of Amaryllidaceae tribe Hippeastreae. Taxon 68: 481-498. https://doi.org/10.1002/tax.12062

GRABIELE, M.⁠, H. J. DEBAT⁠, M. A. SCALDAFERRO, P. M. AGUILERA, E. A. MOSCONE, J. G. SEIJO & D. A. DUCASSE. 2018. Highly GC-rich heterochromatin in chili peppers (Capsicum-Solanaceae): A cytogenetic and molecular characterization. Sci. Hortic. 238: 391–399. https://doi.org/10.1016/j.scienta.2018.04.060

GUERRA, M. S. 1986. Reviewing the chromosome nomenclature of Levan et al. Braz. J. Genet. 9: 741-743.

GUERRA, M. 2000. Patterns of heterochromatin distribution in plant chromosomes. Genet. Mol. Biol. 23: 1029–1041. https://doi.org/10.1590/S1415-47572000000400049

GUERRA, M. 2009. Chromosomal variability and the origin of Citrus species. In: Mahoney C. L. & Springer D. A. (Eds) Genetic diversity, pp. 51-68., Nova Science Publishers New York..

GUERRA, M. 2012. Cytotaxonomy: the end of childhood. Plant Biosyst. 146: 703–710. https://doi.org/10.1080/11263504.2012.717973

GUERRA, M., T. RIBEIRO & L. P. FELIX. 2019. Monocentric chromosomes in Juncus (Juncaceae) and implications for the chromosome evolution of the family. Bot. J. Linn. Soc. 191: 475-483. https://doi.org/10.1093/botlinnean/boz065

HUANG, W., Y. DU, X. ZHAO & W. JIN. 2016. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC Plant Biol. 16: 88. https://doi.org/10.1186/s12870-016-0775-7

IBIAPINO, A., M. A. GARCÍA, M. COSTEA, S. STEFANOVIĆ & M. GUERRA. 2020. Intense proliferation of rDNA sites and heterochromatic bands in two distantly related Cuscuta species (Convolvulaceae) with very large genomes and symmetric karyotypes. Genet. Mol. Biol. 43: 1–9. https://doi.org/10.1590/1678-4685-GMB-2019-0068

JIANG, J. 2019. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res. 27: 153–165. https://doi.org/10.1007/s10577-019-09607-z

JUDD, W. S., CAMPBELL C. S., KELLOGG E. A., STEVENS P. F. & DONOGHUE M. J. 2016. Plant systematics: a phylogenetic approach. 4th ed. Sunderland, Sinauer Associates.

KIROV, I., L. KHRUSTALEVA, K. V. LAERE, A. SOLOVIEV, S. MEEUS, D. ROMANOV & I. FESENKO. 2017. DRAWID: user-friendly java software for chromosome measurements and idiogram drawing. Comp. Cytogenet. 11: 747–757. https://doi.org/10.3897/compcytogen.v11i4.20830

LEVIN, D. A. 2002. The role of chromosomal change in plant evolution. New York, Oxford University Press.

LOWER, S. S., M. P. MCGURK, A. G. CLARK & D. A. BARBASH. 2018. Satellite DNA evolution: old ideas, new approaches. Curr. Opin. Genet. Dev. 49: 70–78. https://doi.org/10.1016/j.gde.2018.03.003

MANDÁKOVÁ, T. & M. A. LYSAK. 2018. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42: 55–65. https://doi.org/10.1016/j.pbi.2018.03.001

MARQUES, A., A. M. BANAEI-MOGHADDAM, S. KLEMME, F. R. BLATTNER, K. NIWA, M. GUERRA & A. HOUBEN. 2013. B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Ann. Bot. 112: 527–534. https://doi.org/10.1093/aob/mct121

MORAES, A. P., R. R. LEMOS, A. C. BRASILEIRO-VIDAL, W. S. S FILHO & M. GUERRA. 2007. Chromosomal markers distinguish hybrids and non-hybrid accessions of mandarin. Cytogenet. Genome Res. 119: 275–281. https://doi.org/10.1159/000112074

NARANJO, C. A. 1974. Karyotypes of four argentine species of Habranthus and Zephyranthes (Amaryllidaceae). Phyton. 32: 61–71.

PEDROSA, A., N. SANDAL, J. STOUGAARD, D. SCHWEIZER & A. BACHMAIR. 2002. Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661-1672.

PEDROSA-HARAND, A., C. C. S. ALMEIDA, M. MOSIOLEK, M. W. BLAIR, D. SCHWEIZER & M. GUERRA. 2006. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor. Appl. Genet. 112: 924–933. https://doi.org/10.1007/s00122-005-0196-8

RIBEIRO, T., E. VASCONCELOS, K. G. B. SANTOS, M. VAIO, A.C. BRASILEIRO-VIDAL & A. PEDROSA-HARAND. 2020. Diversity of repetitive sequences within compact genomes of Phaseolus L. beans and allied genera Cajanus L. and Vigna Savi. Chromosome Res. 28: 139–153. https://doi.org/10.1007/s10577-019-09618-w

RIBEIRO, T., J. NASCIMENTO, A. SANTOS, L. P. FÉLIX, & M. GUERRA. 2021. Origin and evolution of highly polymorphic RDNA sites in Alstroemeria longistaminea (Alstroemeriaceae) and selated species. Genome 64: 833–45. https://doi.org/10.1139/gen-2020-0159

ROA, F. & M. GUERRA. 2015. Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet. Genome Res. 146: 243–249. https://doi.org/10.1159/000440930

ROBLEDO, G. & G. SEIJO. 2010. Species relationships among the wild non-B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor. Appl. Genet. 121: 1033–1046. https://doi.org/10.1007/s00122-010-1369-7

ROSATO, M., I. ÁLVAREZ, G. N. FELINER & J. A. ROSSELLÓ. 2017. High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae). PLoS One 12: e0187131. https://doi.org/10.1371/journal.pone.0187131

ROSATO, M., I. ÁLVAREZ, G. N. FELINER & J. A. ROSSELLÓ. 2018. Inter- and intraspecific hypervariability in interstitial telomeric-like repeats (TTTAGGG)n in Anacyclus (Asteraceae). Ann. Bot. 122: 387–395. https://doi.org/10.1093/aob/mcy079

SAMOLUK, S. S., L. M. I CHALUP, C. CHAVARRO, G. ROBLEDO, D. J. BERTIOLI, S. A. JACKSON & J. G. SEIJO. 2019. Heterochromatin evolution in Arachis investigated through genome-wide analysis of repetitive DNA. Planta 49: 1405-1415. https://doi.org/10.1007/s00425-019-03096-4

SILVA, S. C., S. MENDES, T. RÉGIS, O. S. PASSOS, W. S. S. FILHO & A. PEDROSA-HARAND. 2019. Cytogenetic map of pummelo and chromosome evolution of true Citrus species and the hybrid sweet orange. J. Agric. Sci. 11: 148. https://doi.org/10.5539/jas.v11n14p148

SILVESTRI, M .C., A. M. ORTIZ, G. A. R. DOBLADEZ & G. I. LAVIA. 2020. Chromosome diversity in species of the genus Arachis, revealed by FISH and CMA/DAPI banding, and inferences about their karyotype differentiation. An. Acad. Bras. Cienc. 92: 1–29. https://doi.org/10.1590/0001-3765202020191364

SINGH, R. J. 2003. Plant cytogenetics. 3rd ed. Boca Raton, Florida, USA .

SOLTIS, D. E., P. S. SOLTIS, D. W. SCHEMSKE, J. F. HANCOCK, J. N. THOMPSON, B. C. HUSBAND & W. S. JUDD. 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon. 56: 13-30. https://doi.org/10.2307/25065732.

SOUZA, G., A. MARQUES, T. RIBEIRO, L. G. DANTAS, P. ESPERANZA, M GUERRA & O. CROSA. 2019. Allopolyploidy and extensive rDNA site variation underlie rapid karyotype evolution in Nothoscordum section Nothoscordum (Amaryllidaceae). Bot. J. Linn. Soc. 190: 215–228. https://doi.org/10.1093/botlinnean/boz008

STEBBINS, G. L. 1971. Chromosomal evolution in higher plants. Edward Arnold Ltd, London.

VAIO, M., J. NASCIMENTO, S. MENDES, A. IBIAPINO, L. P. FÉLIX, A. GARDNER, A. GARDNER, E. EMSHWILLER, P. FIASCHI, M. GUERRA. 2018. Multiple karyotype changes distinguish two closely related species of Oxalis (O. psoraleoides and O. rhombeo-ovata) and suggest an artificial grouping of section Polymorphae (Oxalidaceae). Bot. J. Linn. Soc. 188: 269–280. https://doi.org/10.1093/botlinnean/boy054

VANZELA, A. L. L., A. A. PAULA, C. C. QUINTAS, T. FERNANDES, J. N. C. BALDISSERA & T. B. SOUZA. 2017. Cestrum strigilatum (Ruiz & Pavón, 1799) B chromosome shares repetitive DNA sequences with A chromosomes of different Cestrum (Linnaeus, 1753) species. Comp. Cytogenet. 11: 511–524. https://doi.org/10.3897/CompCytogen.v11i3.13418

Downloads

Published

2022-03-29

Issue

Section

Genetics & Evolution

How to Cite

“Molecular Cytogenetics Reveals an Uncommon Structural and Numerical Chromosomal Heteromorphism in Zephyranthes Brachyandra (Amaryllidaceae)”. 2022. Boletín De La Sociedad Argentina De Botánica (Journal of the Argentine Botanical Society 57 (1). https://doi.org/10.31055/1851.2372.v57.n1.34304.

Similar Articles

21-30 of 61

You may also start an advanced similarity search for this article.