Studying pollen representation of vegetation and plant richness from Pampean coastal dunes (Argentina, South America): exploring from local to landscape quantitative linkages
DOI:
https://doi.org/10.31055/1851.2372.v59.n4.44793Palavras-chave:
Coastal dune vegetation, landscape heterogeneity, Pollen, Quantitative pollen- vegetation relationshipResumo
Background and aims: Studying plant dynamics through past pollen records may contribute to a better understanding of long-term changes in plant communities. Thus, this study aims to establish whether surface pollen composition and richness of the Argentinean Coastal Dune System reflect landscape heterogeneity in coastal dune environments.
M&M: Twenty-four sediment surface samples were collected in small lagoons. Landscape-scale heterogeneity up to 2000 m was mapped and classified in landscape units. Multivariate analyses were used to classify pollen samples and compare them to landscape unit coverage (%). Also, we evaluate plant species and pollen richness relationship by linear regression models.
Results: The relationship between plant and pollen richness is influenced by taxonomic smoothing, pollen production and taphonomic constraints (dispersal and preservation). The pollen assemblages and pollen richness from surface sediments of small lagoons and interdune slacks reflect plant richness and vegetation heterogeneity at the landscape scale (ca. 1000-2000 m). The main contributors to pollen richness are anemophilous pollen types, although some entomophilous pollen types are useful to infer some local heterogeneity.
Conclusions: We report the first quantitative analysis on pollen-vegetation relationship of coastal ecosystems showing that pollen records reflect landscape vegetation attributes, encouraging the study of past plant diversity and landscape variability based on pollen records.
Referências
ABRAHAM, V., J. ROLEČEK, O. VILD, E. JAMRICHOVÁ … & P. KUNEŠ. 2020. Spatial scaling of pollen-based alpha and beta diversity within forest and open landscapes of Central Europe. bioRxiv: 2020.08.18.255737. https://doi.org/10.1101/2020.08.18.255737
ADELEYE, M. A., M., MARIANI, S. CONNOR, S. HABERLE… & J. STEVENSON. 2020. Long-term drivers of vegetation turnover in Southern Hemisphere temperate ecosystems. Global Ecol Biogeogr. 30: 557.571ALBERIO, C. 2010. Patrones de invasión de especies vegetales leñosas en Mar Azul, Buenos Aires. Tesis de Grado, Universidad Nacional de Mar del Plata, Argentina.
ALBERIO, C. & V. COMPARATORE. 2014. Patterns of woody plant invasion in an Argentinean coastal grassland. Acta Oecol.54: 65-71. https://doi.org/10.1016/j.actao.2013.09.003
ANDERSEN, S. T. 1995. History of vegetation and agriculture at Hassing Huse Mose, Thy, Northwest Denmark since the Ice Age. J. Danish Archaeol 11: 57–79. https://doi.org/10.1080/0108464X.1993.10590072
BARRIOS, Y. & N. RAMÍREZ. 2020. Biología floral y solapamiento fenológico de las angiospermas de un bosque inundable, cuenca del lago de Maracaibo, Venezuela. Acta Bot. Mex. 127: e1704. https://doi.org/10.21829/abm127.2020.1704
BENNETT, K. & K. J. WILLIS. 2001. Pollen. In: SMOL, J. P., H. J. B. BIRKS, W. M. LAST, R. S. BRADLEY & K. ALVERSON (eds.), Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol. 3: 5-32, Springer, Dordrecht. https://doi.org/10.1007/0-306-47668-1_2
BENNETT, K. D., S. BOREHAM, M. J. SHARP & V. R. SWITSUR. 1992. Holocene history of environment, vegetation and human settlement on Catta Ness, Lunnasting, Shetland. J. Ecol 80: 241-273. https://doi.org/10.2307/2261010
BENSENY, G. C. 2011. La zona costera como escenario turístico: Transformaciones territoriales en la costa Atlántica Bonaerense Villa Gesell (Argentina). Tesis de Doctor en Geografía. Universidad Nacional Del Sur, Argentina.
BÉRTOLA, G. R., M. FARENGA, L. CORTIZO & F. I. ISLA. 1999. Dinámica morfológica de las playas de Villa Gesell (1994-1996), provincia de Buenos Aires. Rev.Asoc.Geol.Argent. 54: 23-35.
BÉRTOLA, G. R., F. I. ISLA, L. CORTIZO & H. A. ORELLANO. 2002. Modelo sedimentario de la barrera medanosa al norte de Villa Gesell (provincia de Buenos Aires) – de aplicación hidrogeológica. Lat. Am. J. of Sedimentol. Basin. Anal.s 9: 109-126.
BIRKS, H.J.B. & J.M. LINE. 1992. The use of Rarefaction Analysis for estimating palynological richness from Quaternary Pollen-Analytical Data. Holocene 2: 1-10. https://doi.org/10.1177/095968369200200101
BIRKS, H. J. B., V.A. FELDE, A. E. BJUNE, J. GRYTNES … & T. GIESECKE. 2016. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol. 228: 1-25. https://doi.org/10.1016/j.revpalbo.2015.12.011
BUNTING, M. J. 1994. Vegetation history of Orkney, Scotland; pollen records from two small basins in west Mainland. New Phytol. 128: 771-792. https://doi.org/10.1111/j.1469-8137.1994.tb04039.x
BUNTING, M. J. & D. MIDDLETON. 2005. Modelling pollen dispersal and deposition using HUMPOL software, including simulating windroses and irregular lakes. Rev. Palaeobot. Palynol. 134: 185-196. https://doi.org/10.1016/j.revpalbo.2004.12.009
BUNTING, M. J. & R. MIDDLETON. 2009. Equifinality and uncertainty in the interpretation of pollen data: the Multiple Scenario Approach to reconstruction of past vegetation mosaics. Holocene 19: 799-803. https://doi.org/10.1177/0959683609105304
BUNTING, M. J., M. FARRELL, A. BROSTRÖM, K. L. HJELLE … & C. L. TWIDDLE. 2013. Palynological perspectives on vegetation survey: a critical step for model-based reconstruction of Quaternary land cover. Quat. Sci. Rev. 82: 41-55. https://doi.org/10.1016/j.quascirev.2013.10.006
BURRY, L. S., M.E. TRIVI DE MANDRI, P. I. PALACIO & M. C. LOMBARDO. 2001. Relaciones polen-vegetación de algunos taxas de la estepa patagónica (Argentina). Rev. Chil. Hist. Nat. 2: 419-427. https://dx.doi.org/10.4067/S0716-078X2001000200016
CABRAL, E. L. & C. PASSICOT. 2010. Asterideas: Diversidad vegetal, biotaxonomía de spermatofitos. Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Argentina.
CABRERA, A. L. 1941. Las comunidades vegetales de las dunas costaneras de la Provincia de Buenos Aires. D.A.G.I. Publicaciones técnicas 1: 5-44.
CABRERA, A. L. & E. M. ZARDINI. 1953. Manual de la flora de los alrededores de Buenos Aires. Editorial Acme, Buenos Aires.
CHENLO, U. 2014. Palinoteca de plantas vasculares acuáticas para el análisis polínico en paleolimnología. Tesis de Grado, Universidade da Coruña, España.
CELSI, C. E. 2016. La vegetación de las dunas costeras pampeanas. In: ATHOR, J. & C. E. CELSI (eds.), La costa atlántica de Buenos Aires: naturaleza y patrimonio cultural. pp. 116-138. Fundación de Historia Natural Félix de Azara, Buenos Aires.
CODIGNOTTO, J. O., F. I. ISLA & A. L. MONTSERRAT. 2012. Manejo del Sistema Playa-Dunas en las Costas en la Provincia de Buenos Aires (Argentina). In: RODRÍGUEZ-PEREA, A., G. X. PONS, X. ROIG-MUNAR, Á. MARTÍN-PRIETO… & A. CABRERA (eds.), La gestión integrada de playas y dunas: experiencias en Latinoamérica y Europa. Monografies de la Societat d'Història Natural de les Balears, vol 19: 271-287. Societat d'Història Natural de les Balears, Palma de Mallorca.
DEL VITTO, L. A. & E. M. PETENATTI. 2015. Asteráceas de importancia económica y ambiental: Segunda parte: Otras plantas útiles y nocivas. Multequina 24: 47-74.
ERDTMAN, G. 1952. Pollen Morphology and Plant Taxonomy—Angiosperms. Almqvist and Wiksell, Stockholm.
FAYE, P. F., A. M. PLANCHUELO & M. L. MOLINELLI. 2002. Relevamiento de la flora apícola e identificación de cargas de polen en el sureste de la provincia de Córdoba, Argentina. Agriscientia 19: 19-30. https://doi.org/10.31047/1668.298x.v19.n0.2649
FELDE, V. A., S. M. PEGLAR, A. E. BJUNE, J. A. GRYTNES & H. J. B. BIRKS. 2015. Modern pollen–plant richness and diversity relationships exist along a vegetational gradient in southern Norway. Holocene 26: 163–175. https://doi.org/10.1177/0959683615596843
FERNÁNDEZ, A. L. & S. C. GRILL. 2016. Análisis de la vegetación y del polen actual en la cuenca inferior del río Colorado, sudoeste de la provincia de Buenos Aires, Argentina. Rev. Bras. Paleontol. 19: 111-126. https://doi.org/10.4072/rbp.2016.1.09
FONTANA, S. L. 2003. Pollen deposition in coastal dunes, south Buenos Aires Province, Argentina. Rev. Palaeobot. Palynol. 126: 17-37. https://doi.org/10.1016/S0034-6667(03)00034-4
FONTANA, S. L. 2004. Present and past coastal dune environments of southwest Buenos Aires Province, Argentina. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, vol. 940. Acta Universitatis Upsaliensis, Upsala.
FONTANA, S. L. 2005a. Coastal Dune Vegetation and Pollen Representation in South Buenos Aires Province, Argentina. "J. Biogeogr." 32: 719-735. https://doi.org/10.1111/j.1365-2699.2004.01221.x
FONTANA, S. L. 2005b. Holocene vegetation history and palaeoenvironmental conditions on the temperate Atlantic coast of Argentina, as inferred from multi-proxy lacustrine records. J. Paleolimnol. 34: 445-469. https://doi.org/10.1007/s10933-005-5792-8
FRAZER, H., A. R. PRIETO & J. C. CARBONELLA, 2020. Modern pollen source and spatial distribution from surface lake sediments in the southwestern Pampa grasslands, Argentina: Implications to interpret Holocene pollen records. Rev. Palaeobot. Palynol. 277: 104207.
GIESECKE, T., S. WOLTERS, S. JAHNS & A. BRANDE. 2012. Exploring Holocene changes in palynological richness in northern Europe – did postglacial immigration matters? PLoS ONE 7: 1-12. https://doi.org/10.1371/journal.pone.0051624
GORING, S., T. LACOURSE, M. PELLATT & R. MATHEWES. 2013. Pollen assemblage richness does not reflect regional plant species richness: a cautionary tale. J. Ecol. 101: 1137-1145. https://doi.org/10.1111/1365-2745.12135
GOSLING, W. D., A. C. M. JULIER, S. ADU-BREDU, G. D. DJAGBLETEY … & S. MOORE. 2018. Pollen-vegetation richness and diversity relationships in the tropics. Veg Hist Archaeobot. 27: 411-418. https://doi.org/10.1007/s00334-017-0642-y
GRIMM, E. 2020. TILIA 2.6.1 [Software]. Illinois State Museum, Illinois.
GRINDEAN, R., A. B. NIELSEN, I. TANŢĂU & A FEURDEAN. 2019. Relative pollen productivity estimates in the forest steppe landscape of southeastern Romania. Rev. Palaeobot. Palynol. 264: 54-63. https://doi.org/10.1016/j.revpalbo.2019.02.007
INSTITUTO DE BOTÁNICA DARWINION. 2020. Catálogo de las Plantas Vasculares del Conosur. Buenos Aires, Argentina: Instituto de Botánica Darwinion. Available in: http://www.darwin.edu.ar/Proyectos/FloraArgentina/BuscarEspecies.asp.
ISLA, F. I., L. C. CORTIZO & E. J. SCHNACK. 1996. Pleistocene and Holocene beaches and estuaries along the Southern Barrier of Buenos Aires, Argentina”. Quat. Sci. Rev. 15: 833-841. https://doi.org/10.1016/S0277-3791(96)00065-0
ISLA, F. I., L. C. CORTIZO & H. A. TURNO ORELLANO. 2001. Dinámica y Evolución de las Barreras Medanosas, Provincia de Buenos Aires, Argentina. Rev. Bras. Geomorfol. 2: 73-83. https://doi.org/10.20502/rbg.v2i1.9
KUMLER, M. L. 1997. Critical environmental factors in dry coastal ecosystems. In: VAN DER MAAREL, E. (ed.), Dry Coastal Ecosystems, Part C. Ecosystems of the World, 2C. pp. 387–409. Elsevier, Amsterdam.
LATORRE, F. 1999. El polen atmosférico como indicador de la vegetación y de su fenología floral. Tesis Doctoral. Universidad de Buenos Aires, Argentina.
LATORRE, F., C. PÉREZ, S. STUTZ & S. PASTORINO. 2010. Pollen deposition in Tauber traps and surface soil samples in the Mar Chiquita Coastal Lagoon Area, Pampa Grasslands (Argentina). Bol. Soc. Argent. Bot. 45: 321-332.
LEGENDRE, P. & H. BIRKS. 2012. From classical to canonical ordination. In: BIRKS, H., A. LOTTER, S. JUGGINS & J. SMOL (eds), Tracking environmental change using lake sediments. Developments in paleoenvironmental research, vol 5: 201–248. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2745-8_8
LI, B., W. WANG, H. WANG, Y. ZHANG … & Y. MA. 2022. Pollen–vegetation relationship based on lake surface sediments of arid and semi-arid northern China; considerations and limitations. Rev. Palaeobot. Palynol. 303: 104694. https://doi.org/10.1016/j.revpalbo.2022.104694
LIU, Y. K. OGLE, J. LICHSTEIN & S. JACKSON. 2022. Estimation of pollen productivity and dispersal: How pollen assemblages in small lakes represent vegetation. Ecol. Monogr.: 92: e1513. https://doi.org/10.1002/ecm.1513
MADANES, N. & C. A. FERNÁNDEZ. 2018. Pollen dispersal and deposition in an agroecosystem at Province of Buenos Aires, Argentina. Darwiniana, n. s. 6: 35-46. dx.doi.org/10.14522/darwiniana.2018.61.785
MARCOMINI, S., R. LÓPEZ, P. PICCA, N. MADANES & L. BERTOLÍN. 2017. Natural Coastal Dune-Field Landforms, Plant Communities, and Human Intervention along Buenos Aires Northern Aeolian Barrier. J. Coast. Res. 33: 1051-1064. https://doi.org/10.2112/JCOASTRES-D-15-00219.1
MARCOS, M. A. & M. V. MANCINI. 2012. Modern pollen and vegetation relationships in northeastern Patagonia (Golfo San Matías, Río Negro). Rev. Palaeobot. Palynol. 171: 19-26. https://doi.org/10.1016/j.revpalbo.2011.11.007
MASCIADRI, S., S. STUTZ & F. GARCÍA-RODRÍGUEZ. 2013. Modern pollen–vegetation relationship of plant communities in the Uruguayan Atlantic coast. Braz. J. Bot. 36: 31–44. https://doi.org/10.1007/s40415-013-0006-5
MATTHIAS, I. & T. GIESECKE. 2014. Insights into pollen source area, transport and deposition from modern pollen accumulation rates in lake sediments. Quat. Sci. Rev. 87: 12-23.
MATTHIAS, I., M. SWEN SEMMLER & T. GIESECKE. 2015. Pollen diversity captures landscape structure and diversity. J. Ecol. 103: 880-890. https://doi.org/10.1111/1365-2745.12404
MEDINA, R. (ed). 2018. Flora del valle de Tehuacán-Cuicatlán: Lemnaceae. Instituto de Biología, Universidad Nacional Autónoma de México, México.
MELTSOV, V., A. POSKA, B.V. ODGAARD, M. SAMMUL & T. KULL. 2011. Palynological richness and pollen sample evenness in relation to local floristic diversity in southern Estonia. Rev. Palaeobot. Palynol. 166: 344--351.
MONSERRAT, A. L., C. E. CELSI & S. L. FONTANA. 2012. Coastal dune vegetation of the Southern Pampas (Buenos Aires, Argentina) and its value for conservation. J. Coast. Res. 28: 23-35. https://doi.org/10.2112/JCOASTRES-D-10-00061.1
MOORE, P. D., J. A. WEBB & M. E. COLLINSON. 1991. Pollen analysis. 2nd ed. Blackwell, Oxford.
MOURELLE, D. & A. PRIETO. 2016. Pollen and spores from surface samples in the campos region of Uruguay and their paleoecological implications. Acta Bot. Bras. 30: 351-370. https://doi.org/10.1590/0102-33062016abb0117
MOURELLE, D., A. PRIETO & F. GARCÍA-RODRÍGUEZ. 2017. Riparian woody vegetation history in the campos region, southeastern South America, during two time windows: late Pleistocene and late Holocene. Quat. Sci. Rev. 167: 14-29. https://doi.org/10.1016/j.quascirev.2017.04.024.
NAVARRO, C., J. S. CARRIÓN, M. MUNUERA & A. R. PRIETO. 2001. Sedimentación y distribución superficial de palinomorfos en cuevas del SE Ibérico. Implicaciones en paleoecología. An. biol. 23: 103-132.
ODGAARD, B.V. 1999. Fossil pollen as a record of past biodiversity. J. Biogeogr. 26: 7-17.
ODGAARD, B.V. 2018. Reconstructing past biodiversity development. In: ELIAS, S. A. (ed.), Reference module in earth systems and environmental sciences. Elsevier, Amsterdam.. https://doi.org/10.1016/B978-0-12-409548-9.11644-6
OKSANEN, J., G. L. SIMPSON, G. BLANCHET, R. KINDT … & J. WEEDON. 2017. Vegan: Community Ecology Package. R package Version 2.4-3. Available in: https://CRAN.R-project.org/package=vegan
OYARZABAL, M., J. CLAVIJO, L. OAKLEY, F. BIGANZOLI… & R. J. C. LEON. 2018. Vegetation units of Argentina. Ecol. Austral 28: 40--63.
PAPADOPOULOU, M., I. TSIRIPIDIS, S. PANAJIOTIDIS, G. FOTIADIS… & T. GIESECKE. 2022. Testing the potential of pollen assemblages to capture composition, diversity and ecological gradients of surrounding vegetation in two biogeographical regions of southeastern Europe. Veg. Hist. Archaeobotany 31: 1--15. https://doi.org/10.1007/s00334-021-00831-4
PRENTICE, I. C. 1985. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat. Res. 23: 76-86.
PROVENDOLA, J. I. 2013. Villa Gesell. La baliza que invento un lugar: Al principio, fue el faro. https://www.pagina12.com.ar/diario/suplementos/turismo/9-2558-2013-05-05.html. [Access: May 9 2023].
R DEVELOPMENT CORE TEAM. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in: https://www.R-project.org/.
REITALU, T., A. E. BJUNE, A. BLAUS, T. GIESECKE … & J. B. BIRKS. 2019. Patterns of modern pollen and plant richness across northern Europe. J. Ecol. 107: 1662--1677. https://doi.org/10.1111/1365-2745.13134
SANZ, M., D. SÁNCHEZ & S. VESPERINAS. 2004. Atlas de las Plantas Alóctonas Invasoras en España. Dirección General para la Biodiversidad, Madrid.
SÁNCHEZ, A. C. & L. C. LUPO. 2011. Origen botánico y geográfico de las mieles de El Fuerte, Departamento de Santa Bárbara, Jujuy, Argentina. Bol. Soc. Argent. Bot. 46: 105-111.
SENN, C., W. TINNER, V. FELDE, E. GOBET … & C. MORALES-MOLINO. 2022. Modern pollen – vegetation – plant diversity relationships across large environmental gradients in northern Greece. Holocene 32: 159–173. https://doi.org/10.1177/09596836211060494
SOTTILE, G. D., M. E. ECHEVERRÍA, M. S. TONELLO, M. A. MARCOS… & M. V. MANCINI. 2020. Dinámica de la vegetación andina del lago Argentino (50° S, 72° O) desde el retiro de los glaciares (ca. 12.000 años cal AP). Andean Geol. 47: 599-627. http://dx.doi.org/10.5027/andgeoV47n3-3303
STUTZ, S. 2000. Historia de la vegetación del litoral bonaerense durante el último ciclo transgresivo – regresivo del Holoceno. Tesis Doctoral. Universidad Nacional de Mar del Plata, Argentina.
STUTZ, S. 2001. Vegetación del área de la laguna Mar Chiquita. In: IRIBARNE, O. (Ed), Reserva de Biosfera Mar Chiquita: Características físicas, biológicas y ecológicas, pp. 75-78. Editorial Martín, Mar del Plata.
STUTZ, S. & A. R. PRIETO. 2003. Modern pollen and vegetation relationships in Mar Chiquita coastal lagoon area, southeastern Pampa grasslands, Argentina. Rev. Palaeobot. Palynol. 126: 183-195. https://doi.org/10.1016/S0034-6667(03)00084-8
SUGITA, S. 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J. Ecol. 82: 881-897. https://doi.org/10.2307/2261452
SUGITA, S. 2007a. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17: 229-241. https://doi.org/10.1177/0959683607075837
SUGITA, S. 2007b. Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 17: 243-257. https://doi.org/10.1177/0959683607075838
VÄLI, V., B. V. ODGAARD, Ü. VÄLI & A. POSKA. 2022. Pollen richness: a reflection of vegetation diversity or pollen-specific parameters? Veg Hist Archaeobot. 31: 611-622. https://doi.org/10.1007/s00334-022-00879-w
VAN DER SANDE, M. T., M. B. BUSH, D. H. URREGO, M. SILMAN … & GOSLING W. 2021. Modern pollen rain predicts shifts in plant trait composition but not plant diversity along the Andes–Amazon elevational gradient. J. Veg. Sci. 32: e12925. https://doi.org/10.1111/jvs.12925
VÁSQUEZ, C., G. SOTTILE, S. STUTZ, G. SÁNCHEZ-VUICHARD & V. MERINO-CAMPOS. 2023. Reconstrucción paleoambiental en el Sistema de Dunas Costeras del SE bonaerense. In: Libro de Resúmenes XXX Reunión Argentina de Ecología. INIBIOMA/IFAB CONICET-ASAE, Bariloche.
VELÁZQUEZ, N. J. & BURRY, L. S. 2019. Análisis palinológico de superficie de hojas y tallos de ítems dietarios de Lama guanicoe (Fam. Camelidae) en Patagonia (Argentina): implicancias en la identificación del origen del polen en coprolitos. Bol. Soc. Argent. Bot. 54: 67-78.
WANG, Q., J. LI, K. LU, G. XIE … & Y. WANG. 2022. Pollen R-values in arid central Asia for quantitative palaeo-vegetation reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 596: 110993. https://doi.org/10.1016/j.palaeo.2022.110993
WENG, C., H. HOOGHIEMSTRA & J. F. DUIVENVOORDEN. 2006. Challenges in estimating past plant diversity from fossil pollen data: statistical assessment, problems and possible solutions. Divers. Distrib. 12: 310-318.
WIEMER, A. P., A. N. SÉRSIC & A. O. SIMÕES. 2009. Biología floral de Oxypetalum solanoides (Apocynaceae); Floral biology of Oxypetalum solanoides (Apocynaceae). In: Bol. Soc. Argent. Bot. 44 (Supl), p. 177. Huerta Grande, Argentina.
WITTAKER, R. J., K. J. WILLIS, R. FIELD. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28: 453-470.
XU, Q., F. TIAN, M. J. BUNTING, Y. LI… & Z. HE. 2012. Pollen source areas of lakes with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China. Quat. Sci. Rev. 37: 81-91.
YEZZI, A. L., A. J. NEBBIA & S. M. ZALBA. 2018. Fragmentación de pastizales psamófilos por plantaciones de pinos: efectos sobre la riqueza y la composición vegetal. Ecol. Austral 28: 133-144. https://doi.org/10.25260/EA.18.28.1.0.640
ZULOAGA, F., M. BELGRANO & C. ZANOTTI. 2019. Actualización del Catálogo de las Plantas Vasculares del Cono Sur. Darwiniana, n. s.7: 208-278. https://doi.org/10.14522/darwiniana.2019.72.861
Downloads
Arquivos adicionais
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Carolina Vásquez , Gonzalo Sottile, Victor Merino-Campos, Silvina Stutz
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Proporciona ACESSO ABERTO imediato e livre ao seu conteúdo sob o princípio de tornar a pesquisa livremente disponível ao público, o que promove uma maior troca de conhecimento global, permitindo que os autores mantenham seus direitos autorais sem restrições.
Material publicado em Bol. Soc. Argent. Bot. é distribuído sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.