Stem diameter (DBH) and phorophyte species: key factors determining filmy ferns (Hymenophyllum, Hymenophyllaceae) composition in a temperate forest fragment from Chile
DOI:
https://doi.org/10.31055/1851.2372.v59.n4.44499Keywords:
composición florística, Análisis multivariado, bosque nativo, HymenophyllaceaeAbstract
Background and aims: Filmy ferns (Hymenophyllum) are notable for their reliance on moist microsites for survival, though the determinants of their assemblage in the habitat remain partially undefined. The aim of this study was to investigate how five habitat variables – stem orientation (N-S-E-W), forophyte species, presence of climbers, diameter at breast height (DBH) and canopy cover – affect the composition of film fern communities in a temperate forest fragment.
M&M: 120 trees were sampled along a transect through the centre of the forest, assessing the presence/absence of ferns up to 2.3 m above the stem. Data analysis was performed using PERMANOVA with 10,000 permutations followed by multiple comparisons to detect differences in fern composition between forophyte species.
Results: A significant influence of both tree DBH (pseudo-F = 21.617; p < 0.001) and forophyte species identity (pseudo-F = 4.123; p < 0.001) was detected. Multiple comparisons revealed significant differences (pseudo-T, p < 0.05) in fern assemblages associated with forophyte species groups.
Conclusions: The results indicate that certain physical and biotic characteristics of the forophyte are crucial for the structuring of film fern communities, other environmental factors initially considered may not be as important or their effect may be masked by homogeneity of sampling conditions, insufficient sample size or effect of anthropogenic disturbances.
References
ANDERSON, M. J., R. GORLEY & K. CLARKE. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-e, Aucklandd.
ANDERSON, M. J. & D. C. WALSH. 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 83: 557-574. https://doi.org/10.1890/12-2010.1
ARAGÓN, G., L. ABUJA, R. BELINCHÓN & I. MARTÍNEZ. 2015. Edge type determines the intensity of forest edge effect on epiphytic communities. Eur. J. Forest Res. 134: 443-451. https://doi.org/10.1007/s10342-015-0868-7
ARROYO-RODRÍGUEZ, V. & T. TOLEDO-ACEVEDO. 2009. Impact of landscape spatial pattern on liana communities in tropical rainforests at Los Tuxtlas, Mexico. Appl. Veg. Sci. 12: 340-349. https://doi.org/10.1111/j.1654-109X.2009.01030.x
BAUTISTA, L., A. DAMON, S. OCHOA-GAONA & R. TAPIA. 2014. Impact of silvicultural methods on vascular epiphytes (ferns, bromeliads, and orchids) in a temperate forest in Oaxaca, Mexico. Forest Ecol. Managem. 329: 10-20. https://doi.org/10.1016/j.foreco.2014.05.053
BERNASCHINI, M., G. VALLADARES & A. SALVO. 2020. Edge effects on insect-plant food webs: assessing the influence of geographical orientation and microclimatic conditions. Ecol. Entomol. 45: 806-820. https://doi.org/10.1111/een.12854
BIERREGAARD, R. O., T. LOVEJOY, V. KAPOS, A. A. DOS SANTOS & R. W. HUTCHINGS. 1992. The biological dynamics of tropical rainforest fragments: A prospective comparison of fragments and continuous forest. BioScience 42: 859-866. https://doi.org/10.2307/1312085
DE MEDEIROS, P. M., G. M. C. DOS SANTOS, D. M. BARBOSA, L. C. A. GOMES … & R. R. V. DA SILVA. 2021. Local knowledge as a tool for prospecting wild food plants: experiences in northeastern Brazil. Scientific Reports 11: 594. https://doi.org/10.1038/s41598-020-79835-5
DIECKMAN, M., A. KÜHNE & M. ISERMANN. 2007. Random vs non-random sampling: effects on patterns of species abundance, species richness and vegetation-environment relationships. Folia Geobot. 42: 179-190. https://doi.org/10.1007/BF02893884
DIEM, J. & J. LICHTENSTEIN. 1959. Las Himenofiláceas del área argentino-chilena del sur. Darwiniana 11: 611-760.
DUBUISSON, J.-Y., H. SCHNEIDER & S. HENNEQUIN. 2009. Epiphytism in ferns: diversity and history. Comp. Rend. Biol. 332: 120-128. https://doi.org/10.1016/j.crvi.2008.08.018
FLORES-BAVESTRELLO, A., M. KRÓL, A. IVANOV, N. HÜNER, J. García-Plazaola, L. Corcuera & L. BRAVO. 2016. Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress. J. Pl. Physiol. 191: 82-94. https://doi.org/10.1016/j.jplph.2015.11.011
GARCÉS, M., C. STEPHAN, C. ALVEAR, C. RABERT & L. BRAVO. 2014. Desiccation tolerance of Hymenophyllacea filmy ferns is mediated by constitutive and non-inducible cellular mechanisms. Comp. Rend. Biol. 337: 235-243. https://doi.org/10.1016/j.crvi.2014.02.002
GIANOLI, E., A. SALDAÑA, M. JIMÉNEZ-CASTILLO & F. VALLADARES. 2010. Distribution and abundance of vines along the light gradient in a southern temperate rain forest. J. Veg. Sci. 21: 66-73. https://doi.org/10.1111/j.1654-1103.2009.01125.x
HOBBS, R. J. & L. F. HUENNEKE. 1992. Disturbance, Diversity, and Invasion: Implications for Conservation. Conservation Biol. 6: 324-337.
HOEBER, V. & G. ZOTZ. 2021. Not so stressful after all: Epiphytic individuals of accidental epiphytes experience more favourable abiotic conditions than terrestrial conspecifics. Forest Ecol. Managem. 479: 118529. https://doi.org/10.1016/j.foreco.2020.118529
KELLY, B., R. GROSS, K. BITTINGER, S. SHERRILL-MIX … & H. LI. 2015. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics 31: 2461-2468. https://doi.org/10.1093/bioinformatics/btv183
KENKEL, N. C., P. JUHÁSZ-NAGY & J. PODANI. 1989. On sampling procedures in population and community ecology. Vegetatio 83: 195-207. https://doi.org/10.1007/BF00031692
LARSEN, C., M. PONCE & A. SCATAGLINI. 2013. Revisión de las especies de Hymenophyllum (Hymenophyllaceae) del sur de Argentina y Chile. Gayana, Bot. 70: 274-329.
https://doi.org/10.4067/S0717-66432013000200009
LAURANCE, W., W. LAURANCE, J. CAMARGO, R. LUIZÃO … & T. LOVEJOY. 2011. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conservation. 144: 56-67. https://doi.org/10.1016/j.biocon.2010.09.021
LUEBERT, F. & P. PLISCOFF. 2006. Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago.
MARTICORENA, C. & R. RODRÍGUEZ. 1995. Flora de Chile. Vol I Pteridophyta-Gymnospermae. Universidad de Concepción, Concepción.
MEHLTRETER, K. 2010. Fern conservation. En; K. MEHLTRETER et al. (eds.), Fern Ecology, pp. 323-359. Cambridge University Press, Cambridge.
MICHEL, A. & S. WINTER. 2009. Tree microhabitat structures as indicators of biodiversity in Douglas-fir forests of different stand ages and management histories in the Pacific Northwest, U.S.A. Forest Ecol. Managem. 257: 1453-1464. https://doi.org/10.1016/j.foreco.2008.11.027
MUÑOZ, A., P. CHACON, F. PEREZ, E. BARNERT & J. ARMESTO. 2003. Diversity and host tree preferences of vascular epiphytes and vines in a temperate rainforest in southern Chile. Austral. J. Bot. 51: 381-391. https://doi.org/10.1071/BT02070
NICOLAI, V. 1986. The bark of trees: thermal properties, microclimate and fauna. Oecologia 69: 148-160. https://doi.org/10.1007/BF00399052
ORTEGA-SOLÍS, G., I. DÍAZ, D. MELLADO-MANSILLA, F. TELLO … & C. TEJO. 2017. Ecosystem engineering by Fascicularia bicolor in the canopy of the South-American temperate rainforest. Forest Ecol. Managem. 400: 417-428.
https://doi.org/10.1016/j.foreco.2017.06.020
PARRA, M. J., I. DÍAZ, D. MELLADO-MANSILLA, F. TELLO … & C. TEJO. 2009. Vertical distribution of Hymenophyllaceae species among host tree microhabitats in a temperate rainforest in southern Chile. J. Veg. Sci. 20: 588-595. https://www.jstor.org/stable/40295772
PINCHEIRA-ULBRICH, J., C. HERNÁNDEZ & A. SALDAÑA. 2018. Consequences of swamp forest fragmentation on assemblages of vascular epiphytes and climbing plants: Evaluation of the metacommunity structure. Ecology and Evolution 8: 11785-11798.
https://doi.org/10.1002/ece3.4635
PINCHEIRA-ULBRICH, J., C. E. HERNÁNDEZ, A. SALDAÑA, F. PEÑA-CORTÉS & F. AGUILERA-BENAVENTE. 2016. Assessing the completeness of inventories of vascular epiphytes and climbing plants in Chilean swamp forest remnants. New Zealand J. Bot. 54: 458-474. https://doi.org/10.1080/0028825X.2016.1218899
PINCHEIRA-ULBRICH, J., J. R. RAU & C. SMITH-RAMIREZ. 2012. Diversidad de plantas trepadoras y epífitas vasculares en un paisaje agroforestal del sur de Chile: una comparación entre fragmentos de bosque nativo. Bol. Soc. Argent. Bot. 47: 411-426.
PINCHEIRA-ULBRICH, J., J. R. RAU, y E. HAUENSTEIN. 2008. Diversidad de árboles y arbustos en fragmentos de bosque nativo en el sur de Chile. Phyton (Buenos Aires). 77: 321-326.
PTERIDOPHYTE PHYLOGENY GROUP I (PPG I). 2016. A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 54: 563-603.
https://doi.org/10.1111/jse.12229
REYES, F., S. ZANETTI, A. ESPINOSA & M. ALVEAR. 2010. Biochemical properties in vascular epiphytes substrate from a temperate forest of Chile. Revista de la Ciencia del Suelo y Nutrición Vegetal 10: 126-138. https://doi.org/10.4067/S0718-27912010000200004
RODRÍGUEZ, R., D. ALARCÓN & J. ESPEJO. 2009. Helechos nativos del centro y sur de Chile: Guía de campo. Editorial Corporación Chilena de la Madera, Concepción.
SALDAÑA, A., M. PARRA, A. FLORES-BAVESTRELLO, L. CORCUERA & L. BRAVO. 2014. Effects of forest successional status on microenvironmental conditions, diversity, and distribution of filmy fern species in a temperate rainforest. Pl. Spec. Biol. 29: 253-262.
https://doi.org/10.1111/1442-1984.12020
SEVER, K. & T. NAGEL. 2019. Patterns of tree microhabitats across a gradient of managed to old-growth conditions. Acta Silvae et Ligni 118: 29-40 https://doi.org/10.20315/asetl.118.3
SHMIDA, A. & S. ELLNER. 1986. Coexistence of plant species with similar niches. Vegetatio 58: 29-55. https://doi.org/10.1007/BF00044894
STEIN, A., K. GERSTNER & H. KREFT. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Letters. 17: 866-880. https://doi.org/10.1111/ele.12277
TAYLOR, A., A. SALDAÑA, G. ZOTZ, C. KIRBY … & K. BURNS. 2016. Composition patterns and network structure of epiphyte-host interactions in Chilean and New Zealand temperate forests. New Zealand J. Bot. 54: 204-222. https://doi.org/10.1080/0028825X.2016.1147471
VAN DER HEIJDEN, G. & O. PHILLIPS. 2008. What controls liana success in Neotropical forests. Global Ecol. Biogeogr. 17: 372-383. https://doi.org/10.1111/j.1466-8238.2007.00376.x
WAGNER, K., G. MENDIETA-LEIVA & G. ZOTZ. 2015. Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AoB Plants 7: plu092. https://doi.org/10.1093/aobpla/plu092
WAHEED, M., S. HAQ, K. FATIMA, F. ARSHAD … & K. YESSOUFOU. 2022. Ecological distribution patterns and indicator species analysis of climber plants in Changa Manga Forest Plantation. Diversity. https://doi.org/10.3390/d14110988
WANG, X., W. LONG, B. SCHAMP, X. YANG … & M. XIONG. 2016. Vascular epiphyte diversity differs with host crown zone and diameter, but not orientation in a tropical cloud forest. PLoS ONE 11: e0158548. https://doi.org/10.1371/journal.pone.0158548
WICKLEIN, H., D. CHRISTOPHER, M. CARTER & B. SMITH. 2012. Edge effects on sapling characteristics and microclimate in a small temperate deciduous forest fragment. Nat. Areas J. 32: 110-116. https://doi.org/10.3375/043.032.0113
WODA, C., A. HUBER & A. DOHRENBUSCH. 2006. Vegetación epífita y captación de neblina en bosques siempreverdes en la Cordillera Pelada, sur de Chile. Bosque (Valdivia). 27: 231-240. https://doi.org/10.4067/S0717-92002006000300002
WOODS, C. 2017. Primary ecological succession in vascular epiphytes: The species accumulation model. Biotropica 49: 452-460. https://doi.org/10.1111/btp.12443
ZOTZ, G. & M. BADER. 2009. Epiphytic plants in a changing world: global change effects on vascular and non-vascular epiphytes. Progr. Bot. 70: 147-170.
https://doi.org/10.1007/978-3-540-68421-3_7
Referencias de Figuras y de Tablas
Tabla 1. Resultados del análisis PERMANOVA (Permutational Multivariate Analysis of Variance) para la composición de especies de la comunidad de helechos película (Hymenophyllum spp.) y su relación con algunas variables del hábitat forestal. Fuente: fuentes de variación. df: grados de libertad asociados a cada fuente de variación. SS: Suma de cuadrados, que indica la variación total asociada a cada fuente de variación. MS: media cuadrática. P(perm): Valor p obtenido a través del proceso de 10000 permutaciones. Pseudo-F: estadístico análogo al valor F en ANOVA tradicional. Unique perms: Número de permutaciones únicas realizadas para la prueba. Los asteriscos (**) representan combinaciones de niveles de factores para los cuales no hay datos disponibles o las celdas están vacías.
Fig. 1. Área de estudio en la Región de Los Lagos, Chile.
Fig. 2. Resumen de los componentes del hábitat y la presencia de helechos película en 480 orientaciones (micrositios) de troncos forófitos. A: composición de especie de helechos por orientación (Norte-Sur-Este-Oeste). B: Diagrama de caja de la cobertura del dosel (%) por orientación. C: Número de orientaciones por especie forófita (barras negras) y presencia de helechos película (barras grises). D: Distribución diamétrica de los árboles (barras negras) y presencia de helechos película (barras grises). E: Orientaciones ocupadas por helechos película y trepadoras en los troncos.
Fig. 3. Mapa de calor de similitud florística de helechos película entre especies forófitas y comparaciones múltiples con pseudo-T posteriores al PERMANOVA. Símbolos= *: asteriscos indican diferencias significativas (p < 0,05); ○: óvalos representan combinaciones con tamaño de muestra insuficiente.
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Jimmy Pincheira-Ulbrich
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Provides immediate and free OPEN ACCESS to its content under the principle of making research freely available to the public, which fosters a greater exchange of global knowledge, allowing authors to maintain their copyright without restrictions.
Material published in Bol. Soc. Argent. Bot. is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.