Spatial structure of phenotypic traits in seven provenances of Neltuma alba (Fabaceae)
DOI:
https://doi.org/10.31055/1851.2372.v58.n4.39224Keywords:
adaptive, analysis, Neltuma, origin, Prosopis, traitsAbstract
Introduction: Neltuma alba is one of the most important native woody species in Argentina in the Dry Chaco, part of the Argentine Mesopotamia and the Paraguayan Chaco. It shows great variability due to interspecific hybridization and introgression associated with protogyny and self incompatibility systems. This species is adapted to arid and semi-arid climates with saline and degraded soils. Environmental heterogeneity and wide distribution may result in local adaptation and autocorrelated spatial patterns in genetic and quantitative variables. Objective: To analyze the spatial structure in provenances of N. alba influenced by isolation by distance in the Gran Chaco Region.
M&M: This work studied spatial structure in seven provenances of N. alba from the Dry and Humid Chaco regions, based on fifteen foliar, fruit and germination traits in 68 individuals, together with five environmental variables.
Results and Conclusion: univariate statistical analyses showed significant or highly significant differences among provenances. According to Moran’s I index phenotypic and geographical distances are significantly autocorrelated for the first distance class (0-0.643 km). Partial Mantel test showed significant correlation for the first two distance classes. The overall analysis showed that 11 of the analyzed traits showed significant spatial autocorrelation. The local spatial analysis indicated that for several traits their hot spots of high similarity between neighboring individuals and cold spots where nearby individuals are highly differentiated.
References
AGUIRRE MOLARES, A. 2017. Distribution patterns and genetic structure of Cedrela odorata and Albizia saman for the ecological conservation and restoration for the tropical dry forest in Colombia. Thesis of Master in Biological Sciences. University National of Colombia, Colombia [online]. Available in: https://repositorio.unal.edu.co/bitstream/handle/unal/59023/1060651111.2017.pdf?sequence=1&isAllowed=y [Access: 20 september 2023].
BENJAMINI, Y. & Y. HOCHBERG. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. A Sta. 57: 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
BESEGA, C., L. FERREYRA, N. JULIO, S. MONTOYA, B. SAIDMAN & J. VILARDI. 2000. Mating system parameters in species of genus Prosopis (Leguminosae). Hereditas 132: 19-27. https://doi.org/10.1111/j.1601-5223.2000.00019.x
BESEGA, C., C. POMETTI, M. EWENS, B. SAIDMAN & J. VILARDI. Strategies for conservation for disturbed Prosopis alba (Leguminosae, Mimosoidae) forests based on mating system and pollen dispersal parameters. 2012. Tree Genet. Genomes 8: 277-288. https://doi.org/10.1007/s11295-011-0439-6
BESSEGA, C., C. POMETTI, M. EWENS, B. SAIDMAN & J. VILARDI. 2015. Evidences of local adaptation in quantitative traits in Prosopis alba (Leguminosae). Genetic 143: 31-44. https://doi.org/10.1007/s1070 9-014-9810-5
BESSEGA, C., C. POMETTI, B. SAIDMAN & J. VILARDI. 2017. Contribución de estudios genético poblacionales a la conservación de especies nativas de argentina de interés forestal. Ciencia e Investigación 67: 25-35.
BESSEGA, C., J. VILARDI, M. CONNY, B. SAIDMAN & C. POMETTI. 2022. Low genetic variation of foliar traits among Prosopis chilensis (Leguminosae) provenances. J. Plant Res. 135: 221-234. https://doi.org/10.1007/s10265-022-01378-9
BURKART, A. 1976. A monograph of the genus Prosopis (Leguminosae Subfam. Mimosoideae). J. Arnold Arb. 57: 219-249, 450-525.
CASTILLO, M., U. SCHAFFENER, B. van WILGEN, N. MONTAÑO, R. BUSTAMANTE, A. COSACOV, M. MATHESE & J. LE ROUX. 2021. Genetic insights into the globally invasive and taxonomically problematic tree genus Prosopis. AoBP Plants 13: 1-13. https://doi.org/10.1093/aobpla/plaa069
CONTRERA DIAZ, R., M. GONZALEZ GONZALEZ, F. AGUAYO CRUCES, S. GACITUA ARIAS & V. PORCILE SAAVEDRA. 2021. Analysis of the diversity and genetic structure of Prosopis chilensis populations between the provinces of Chacabuco and San Felipe de Aconcagua, using microsatellite molecular markers. Bosque (Valdivia) 42: 371-382. http://dx.doi.org/10.4067/S0717-92002021000300371
DARQUIER, M., C. BESSEGA, M. CONNY, J. VILARDI & B. SAIDMAN. 2013. Evidence of heterogeneous selection on quantitative traits of Prosopis flexuosa (Leguminosae) from multivariate QST–FST test. Tree Genet. Genomes 9: 307-320. https://doi.org/10.1007/s11295-012-0556-x.
DJAVANSHI, K. & H. POURBEIK. 1976. Germination Value - a new formula. Silvae Genetica, 25: 79-83 [online]. Available in: https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1976/Vol._25_Heft_2/25_2_79.pdf. [Access: 20 september 2023].
FONTANA, M., V. PEREZ & C. LUNA. 2018. Effect of the geographic origin in the morphological quality of Prosopis alba (Fabaceae) plants. Rev. Biol. Trop. 66: 593-604. http://dx.doi.org/10.15517/rbt.v66i2.33383.
GARCIA, C. 2019. Integrating the demographics and genetics of populations through the landscape genetics. Ecosistemas 28: 75-90. https://doi.org/10.7818/ECOS.1694.
GETIS, A. & J. ORD. 1992. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24: 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
GONCALVES, L. 2019. Special genetic structure in fragmented landscapes: A study of natural populations of curupay (Leguminosae): Anadenanthera colubrina var. cebil). Doctoral Thesis. University National of La Plata, Argentina. [online]. Available in: http://sedici.unlp.edu.ar/bitstream/handle/10915/73663/Documento_completo.pdf-PDFA2u.pdf?sequence=1&isAllowed=y. [Access : 20 september 2023]
HIJMANS, R. 2019. Raster: Geographic Data Analysis and Modeling. R package versión 2.9-23. https://CRAN.R-project.org/package=raster.
HUGHES, C., J. RINGELBERG, G. LEWIS & S. CATALANO. 2022. Desintegration of the genus Prosopis L. (Leguminosae, Caesalpinioideae, mimosoid clade). PhytoKeys 205: 147-189. https://doi.org/10.3897/phytokeys.205.75379.
MORAN, P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23. https://doi.org/10.2307/2332142.
MORELLO, J., S. MATTEUCCI & A. RODRIGEZ. 2012. Ecorregiones y complejos ecosistemicos argentinos. 1st ed. Orientación Gráfica Editora. Bs. As.
ORD, J. & A. GETIS. 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geogr. Anal. 27: 286-306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x.
ORTIZ, N., S. GIANNONI & R. PAZ. 2018. Spatial genetic structure and genetic diversity of a natural population of Ramorinoa girolae in San Juan province (Argentina): An exploratory analysis. Ecol. Austral 28: 513–524. https://doi.org/10.25260/EA.18.28.3.0.604.
PALACIOS, R. & L. BRAVO. 1981. Natural Prosopis (Leguminosae) hybridization in Argentina’s Chaco Region. Morphological and chromatographic evidences. Darwiniana 23: 3-35.
R CORE TEAM. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (Versión 4.0.3).
ROSER, L. 2017. Genetics of the landscape in Prosopis alba populations from the province of Santiago del Estero. Doctoral Thesis. University of Buenos Aires.
ROSER, L., L. FERREYRA, B. SAIDMAN & J. VILARDI. 2017. EcoGenetics: An R package for the management and exploratory analysis of spatial data in landscape genetics. Mol. Ecol. Resour. 17: e241-e250. https://doi.org/10.1111/1755-0998.12697
SAIDMAN, B. & J. VILARDI. 1993. Genetic variability and germplasm conservation in the genus Prosopis. In: PURI, S., P.K. KHOSLA (eds.), Nursery Technology for Agroforestry: Applications in Arid and Semiarid Regions. pp. 187-198. Winrock-Oxford & IBH Publishing Co., New Delhi.
SIABATO, W. & J. GUZMAN MANRIQUE. 2019. Spatial autocorrelation and development of quantitative geography. Cuad. Geogr. Rev. Colomb. Geogr. 28: 1-22. https://doi.org/10.15446/rcdg.v28n1.76919.
SILVA, J. & J. NAKAGAWA. 1995. Estudo de Fórmulas para cálculo da velocidade de germinação. Informativo Abrates 5: 62-73.
TEICH, I., M. MOTTURA, M. BALZARINI & A. VERGA. 2015. Association between genetic and phenotypic variability with adjustment for spatial autocorrelation in Prosopis. Journal of Basic and Applied Genetics 26: 63-74.
VILLAREAL, M. 2018. Effect of the Cedrela odorata L genetic variability management in the State of Hidalgo. Thesis of Master in Biodiversity and Conservation Sciences. México.
WANG, I. & G. BRADBURG. 2014. Isolation by environment. Mol. Ecol. 23: 5649-5662. https://doi.org/10.1111/mec.12938.
WRIGHT, S. 1943. Isolation by distance. Genetics 28: 114-138. https://doi.org/10.1093/genetics/28.2.114
Published
Issue
Section
License
Copyright (c) 2023 Maria Victoria Vega
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Provides immediate and free OPEN ACCESS to its content under the principle of making research freely available to the public, which fosters a greater exchange of global knowledge, allowing authors to maintain their copyright without restrictions.
Material published in Bol. Soc. Argent. Bot. is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.