Intraspecific variability in growth and in vitro production of plant cell wall-degrading enzymes among argentinean isolates of Colletotrichum graminicola, a maize pathogen
DOI:
https://doi.org/10.31055/1851.2372.v58.n2.39049Keywords:
Anthracnose, Cell wall degrading enzymes, Colletotrichum graminicola, MaizeAbstract
Background and aims: Colletotrichum graminicola (Glomerellaceae, Glomerellales), the causal agent of maize (Zea mays) anthracnose, as many other fungal pathogens, relies on its battery of cell wall degrading enzymes (CWDEs) to make its way through the cell walls of the host, and thus the production of these enzymes is considered a virulence factor. The aim of this work was to investigate if there is intraspecific variability in growth and in vitro production of several extracellular CWDEs among Argentinean fungal isolates of C. graminicola.
M&M: Eight isolates of C. graminicola were tested in vitro to evaluate growth capacity and polygalacturonase, polymethylgalacturonase, β-glucosidase and laccase production, using two different liquid culture media.
Results: Polygalacturonase, polymethylgalacturonase and β-glucosidase production greatly varied among isolates and culture media. Laccase activity was detected only in three isolates. Utmost enzymatic titres attained were respectively 250, 280, 45 and 63 U/l. The observed intraspecific variability in CWDEs in vitro production is consistent with the high variability found at genetic level when assessing ISSR markers.
Conclusions: The isolates of C. graminicola evaluated showed notable differences in CWDEs production, not associated with a differential growth. This indicates a large intraspecific variability, which might be considered when choosing a method to deal with this pathogen.
References
ANDERSON, D. W. & R. L. NICHOLSON. 1996. Characterization of laccase in the conidial mucilage of Colletotrichum graminicola. Mycologia 88: 996-1002. https://doi.org/10.2307/3761063
ARMESTO, C., F. G. M. MAIA, F. P. MONTEIRO & M. S. ABREU. 2019. Exoenzymes as a pathogenicity factor for Colletotrichum gloeosporioides associated with coffee plants. Summa Phytopathol. 45: 368-373. https:// doi.org/10.1590/0100-5405/191071
BEBBER, D. P. & S. J. GURR. 2015. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 74: 62-64. https://doi.org/10.1016/j.fgb.2014.10.012
BELISÁRIO, R., A. E. ROBERTSON & L. J. VAILLANCOURT. 2022. Maize anthracnose stalk rot in the genomic era. Plant Dis. 106: 2281-2298. https://doi.org/10.1094/PDIS-10-21-2147-FE
DA COSTA, R. V., L. V. COTA, D. D. DA SILVA, D. F. PARREIRA, C. R. CASELA, … & J. E. F. FIGUEIREDO. 2014. Races of Colletotrichum graminicola pathogenic to maize in Brazil. Crop Prot. 56: 44-49. https://doi.org/10.1016/j.cropro.2013.10.005
DEAN, R., J. A. L. VAN KAN, Z. A. PRETORIUS, K. E. HAMMOND-KOSACK, A. DI PIETRO, … & G. D. FOSTER. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13: 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
DE ROSSI, R., F. GUERRA, M. C. PLAZA, E. VULETIC, E. BRÜCHER, … & G. I. E. MAGNONE. 2016. Enfermedades del maíz en las últimas cinco campañas. In: Actas resúmenes 34° Congreso Aapresid “Resiliar”. Asociación Argentina de Productores en Siembra Directa, Rosario.
DÍAZ, C., R. DE ROSSI, L. COURETOT, M. SILLÓN, A. N. FORMENTO & V. GONZÁLEZ. 2012. Prevalencia y distribución de enfermedades del maíz en Argentina. In: Anais do 29° Congresso Nacional de Milho e Sorgo, pp. 26-30. Associação Brasileirea de Milho e Sorgo, São Paulo.
FERNÁNDEZ-VALIELA, M. V. 1979. Introducción a la Fitopatología. Vol IV. Hongos y Mycoplasmas. 3a Edición. Colección Científica INTA, Buenos Aires.
GALHAUP, C., H. WAGNER & B. HINTERSTOISSER. 2002. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb. Technol. 30: 529-536.
https://doi.org/10.1016/S0141-0229(01)00522-1
GARCIA-MACEIRA, F. I., A. DI PIETRO & M. I. G. RONCERO. 2000. Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum. Mol. Plant Microbe Interact. 13: 359-365. https://doi.org/10.1094/MPMI.2000.13.4.359
GATICA, S. M., M. GALLY, M. CARMONA, A. M. RAMOS & L. I. FERREYRA. 2014. Diferenciación genética de aislamientos de Colletotrichum graminicola de la región pampeana mediante marcadores ISSR. In: PLOPER, L. D. (ed.), Libro de Resúmenes del 3º Congreso Argentino de Fitopatología, pp. 511. Asociación Argentina de Fitopatólogos, Córdoba.
HAVE, A. T., W. MULDER, J. VISSER & J. A. VAN KAN. 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant Microbe Interact. 11: 1009-1016.
https://doi.org/10.1094/mpmi.1998.11.10.1009
HUGOUVIEUX, V., S. CENTIS, C. LAFITTE & M. ESQUERRE-TUGAYE. 1997. Induction by (alpha)-L-arabinose and (alpha)-L-rhamnose of endopolygalacturonase gene expression in Colletotrichum lindemuthianum. Appl. Environ. Microbiol. 63: 2287-2292. https://doi.org/10.1128/aem.63.6.2287-2292.1997
KIKOT, G. E., R. A. HOURS & T. M. ALCONADA. 2009. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J. Basic Microbiol. 49: 231-241.
https://doi.org/10.1002/jobm.200800231.
KUBICEK C. P., T. L. STARR & N. L. GLASS. 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52: 427-451.
https://doi.org/10.1146/annurev-phyto-102313-045831
LEVIN, L., A. M. RAMOS, M. PARISI & M. GALLY. 2007. Screening of Colletotrichum (Ascomycota) isolates, causal agents of soybean anthracnose, for laccase production. Bol. Soc. Argent. Bot. 42: 71-77.
LIU, C. Q., K. D. HU, T. T. LI, Y. YANG, F. YANG, … & H. ZHANG. 2017. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit. PLoS One 12: e0173277.
https://doi.org/10.1371/journal.pone.0173277
LÓPEZ-PÉREZ, M., A. R. BALLESTER & L. GONZÁLEZ-CANDELAS. 2015. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit. Mol. Plant Pathol. 16: 262-275. https://doi.org/10.1111/mpp.12179
MA, H., B. ZHANG, Y. GAI, X. SUN, K. R. CHUNG & H. LI. 2019. Cell-wall-degrading enzymes required for virulence in the host selective toxin-producing necrotroph Alternaria alternate of citrus. Front. Microbiol. 10: 2514. https://doi.org/10.3389/fmicb.2019.02514
MÜNCH, S., U. LINGNER, D. S. FLOSS, N. LUDWIG, N. SAUER & H. B. DEISING. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165: 41-51.
https://doi.org/10.1016/j.jplph.2007.06.008
PACCANARO, M. C., L. SELLA, C. CASTIGLIONI, F. GIACOMELLO, A. L. MARTÍNEZ-ROCHA, … & F. FAVARON. 2017. Synergistic effect of different plant cell wall-degrading enzymes is important for virulence of Fusarium graminearum. Mol. Plant Microbe Interact. 30: 886-895. https://doi.org/10.1094/MPMI-07-17-0179-R
PASZCZYNSKI, A. & R. L. CRAWFORD. 1991. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: Involvement of veratryl alcohol. Biochem. Biophys. Res. Commun. 178: 1056-1063. https://doi.org/10.1016/0006-291X(91)90999-N
RAMOS, A. M., M. GALLY, M. C. GARCÍA & L. LEVIN. 2010. Pectinolytic enzyme production by Colletotrichum truncatum, causal agent of soybean anthracnose. Rev. Iberoam. Micol. 27: 186-190. https://doi.org/10.1016/j.riam.2010.06.002.
RAMOS, A. M., M. GALLY, G. SZAPIRO, T. ITZCOVICH, M. CARABAJAL & L. LEVIN. 2016. In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn. Rev. Argent. Microbiol. 48: 267-273.
https://doi.org/10.1016/j.ram.2016.06.002
REIGNAULT, P., O. VALETTE-COLLET & M. BOCCARA. 2008. The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. Eur. J. Plant Pathol. 120: 1-11.
https://doi.org/ 10.1007/s10658-007-9184-y
ROGERS, L. M., Y. K. KIM, W. GUO, L. GONZÁLEZ-CANDELAS, D. LI & P. E. KOLATTUKUDY. 2000. Requirement for either a host-or pectin-induced pectate lyase for infection of Pisum sativum by Nectria haematococca. Proc. Natl. Acad. Sci. U.S.A. 97: 9813-9818. https://doi.org/10.1073/pnas.160271497
SOMOGYI, M. J. 1952. Notes on sugar determination. Biol. Chem. 195: 19-23.
SUKNO, S. A., V. M. GARCÍA, B. D. SHAW & M. R. THON. 2008. Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl. Environ. Microbiol. 74: 823-832.
https://doi.org/ 10.1128/AEM.01165-07
TEN HAVE, A., K. B. TENBERGE, J. A. E. BENEN, P. TUDZYNSKI, J. VISSER & J. A. L. VAN KAN. 2002. The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In: KEMPKEN, F. (ed.), The Mycota XI: Agricultural Applications, pp. 341-358. Springer, Heidelberg.
TORRES, M. F., N. GHAFFARI, E. A. BUIATE, N. MOORE, S. SCHWARTZ, … & L. J. VAILLANCOURT. 2016. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. BMC Genom. 17: 202. https://doi.org/10.1186/s12864-016-2546-0
VETCHINKINA, E., A. MESHCHEROV & V. GORSHKOV. 2022. Differential activity of the extracellular phenoloxidases in different isolates of the phytopathogenic fungus, Microdochium nivale. J. Fungi 8: 918. https://doi.org/10.3390/ jof8090918.
WANG, Y., J. WU, J. YAN, M. GUO, L. XU, … & Q. ZOU. 2022. Comparative genome analysis of plant ascomycete fungal pathogens with different lifestyles reveals distinctive virulence strategies. BMC Genom. 23: 34. https://doi.org/10.1186/s12864-021-08165-1
WIJESUNDERA, R. L. C., J. A. BAILEY, R. J. W. BYRDE & A. H. FIELDING. 1989. Cell wall degrading enzymes of Colletotrichum lindemuthianum: their role in the development of bean anthracnose. Physiol. Mol. Plant Pathol. 34: 403-413. https://doi.org/10.1016/0885-5765(89)90067-2
WOOD, T. M. & K. M. BHAT. 1988. Methods for measuring cellulase activities. Methods Enzymol. 160: 87-112. https://doi.org/10.1016/0076-6879(88)60109-1
Published
Issue
Section
License
Copyright (c) 2023 María del Pilar Nuñez, Laura Noemí Levin, Isabel Esther Cinto
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Provides immediate and free OPEN ACCESS to its content under the principle of making research freely available to the public, which fosters a greater exchange of global knowledge, allowing authors to maintain their copyright without restrictions.
Material published in Bol. Soc. Argent. Bot. is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.