Variantes en el número de copias y consanguinidad parental en neonatos de altura con anomalías congénitas en Perú

Autores/as

DOI:

https://doi.org/10.31053/1853.0605.v79.n2.34538

Palabras clave:

análisis por micromatrices, variaciones en el número de copias de ADN, recién nacido, anormalías congénitas, consanguinidad

Resumen

Introducción. Las variantes en el número de copias son un tipo de cambios en el genoma provocan anomalías congénitas.

Objetivo. Determinar las variantes en el número de copias y el grado de consanguinidad parental en neonatos con síndromes malformativos o una anomalía congénita mayor asociado a dismorfia facial o hipotonía.

Material y métodos. Se realizó el análisis cromosómico por micromatrices a 60 neonatos con anomalías congénitas  evaluados en los Hospitales Antonio Lorena y Regional de Cusco.

Resultados. Del total de pacientes estudiados, el 70% tuvo un resultado anómalo; de los cuales en el 14,2% de los recién nacidos se encontraron variantes en el número de copias patogénicas o probablemente patogénicas asociadas o no a regiones de homocigosidad que tuvieron relación con las anomalías congénitas descritas. En el 48,3% de los recién se encontró regiones de homocigosidad mayores a 0,5% (coeficiente de endogamia superior a 1/64). Por otro lado, encontramos cinco variantes en el número de copias de patogenicidad desconocida que no se han descrito anteriormente y podrían estar relacionadas con el fenotipo.

Conclusiones. Nuestra tasa de detección de las variantes en el número de copias está en relación con los reportes internacionales previos. Sin embargo, el porcentaje de neonatos con consanguinidad parental se encuentra por encima de lo reportado previamente, siendo superior a otras regiones de Sudamerica. Este es el primer reporte en el Perú, y es pionero en Latinoamérica al utilizar el análisis cromosómico por micromatrices en esta cohorte específica de pacientes.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Hugo Hernán Abarca Barriga, Universidad Ricardo Palma

    Médico genetista, magister en genética.

  • Felix Chavesta Velásquez, Instituto Nacional de Salud del Niño-Breña

    Biólogo

  • Claudia Barletta Carrillo, Instituto Nacional de Salud del Niño-Breña

    Bióloga

  • Abel Paucarmayta Tacuri, Universidad Nacional de San Antonio Abad del Cusco

    Médico pediatra

  • Margaret Bazán Hurtado, Universidad Nacional de San Antonio Abad del Cusco

    Médica cirujana

  • Tania Vásquez Loarte, University of Washington

    Médica cirujana

  • Luis Ordoñez Rondón, Universidad Nacional de San Antonio Abad del Cusco

    Médico cirujano

  • Marco Ordoñez Linares, Universidad Nacional de San Antonio Abad del Cusco

    Médico internista, Doctor en Salud Pública.

  • Evelina Andrea Rondón Abuhadba, Universidad Nacional de San Antonio Abad del Cusco

    Médica pediatra, Doctora en Salud Pública.

Referencias

1. Pan American Healt Organization. World Health Organization. Congenital anomalies are the second-leading cause of death in children under 5 in the Americas. PAHO; 2015. Disponible en: http://www.paho.org/hq/index.php?option=com_content&view=article&id=10487%3A2015-anomalias-congenitas-segunda-causa-muerte-ninos-menores-5-anos-americas&catid=740%3Apress-releases&Itemid=1926&lang=en

2. Abarca-Barriga, H. Perfil epidemiológico de las anomalías genéticas y congénitas en el servicio de citogenética y citopatología del Hospital Nacional Guillermo Almenara Irigoyen. [tesis]. Lima: Universidad Nacional Mayor de San Marcos; 2007

3. Castilla EE, Lopez-Camelo JS, Campaña H. Altitude as a risk factor for congenital anomalies. Am J Med Genet. 1999 Sep 3;86(1):9-14. doi: 10.1002/(sici)1096-8628(19990903)86:1<9::aid-ajmg3>3.0.co;2-x.

4. Chun H, Yue Y, Wang Y, Dawa Z, Zhen P, La Q, Zong Y, Qu Y, Mu D. High prevalence of congenital heart disease at high altitudes in Tibet. Eur J PrevCardiol. 2019 May;26(7):756-759. doi: 10.1177/2047487318812502.

5. Mone F, Quinlan-Jones E, Ewer AK, Kilby MD. Exome sequencing in the assessment of congenital malformations in the fetus and neonate. Arch Dis Child Fetal Neonatal Ed. 2019 Jul;104(4):F452-F456. doi: 10.1136/archdischild-2018-316352.

6. EmyDorfman L, Leite JC, Giugliani R, Riegel M. Microarray-based comparative genomic hybridization analysis in neonates with congenital anomalies: detection of chromosomal imbalances. J Pediatr (Rio J). 2015 Jan-Feb;91(1):59-67. doi: 10.1016/j.jped.2014.05.007.

7. Dias AT, Zanardo ÉA, Dutra RL, Piazzon FB, Novo-Filho GM, Montenegro MM, Nascimento AM, Rocha M, Madia FA, Costa TV, Milani C, Schultz R, Gonçalves FT, Fridman C, Yamamoto GL, Bertola DR, Kim CA, Kulikowski LD. Post-mortem cytogenomic investigations in patients with congenital malformations. ExpMolPathol. 2016 Aug;101(1):116-23. doi: 10.1016/j.yexmp.2016.07.003

8. Stoll C, Alembik Y, Roth MP, Dott B. Parental consanguinity as a cause for increased incidence of births defects in a study of 238,942 consecutive births. Ann Genet. 1999;42(3):133-9.

9. Mosayebi Z, Movahedian AH. Pattern of congenital malformations in consanguineous versus nonconsanguineous marriages in Kashan, Islamic Republic of Iran. East Mediterr Health J. 2007 Jul-Aug;13(4):868-75

10. Fan YS, Ouyang X, Peng J, Sacharow S, Tekin M, Barbouth D, Bodamer O, Yusupov R, Navarrete C, Heller AH, Pena SDj. Frequent detection of parental consanguinity in children with developmental disorders by a combined CGH and SNP microarray. MolCytogenet. 2013 Sep 20;6(1):38. doi: 10.1186/1755-8166-6-38.

11. Kofman-Alfaro S, Penchaszadeh VB. Community genetic services in Latin America and regional network of medical genetics. Recommendations of a World Health Organization consultation. Community Genet. 2004;7(2-3):157-9. doi: 10.1159/000080789.

12. Penchaszadeh VB. Genetic services in Latin America. Community Genet. 2004;7(2-3):65-9. doi: 10.1159/000080773.

13. Castillo Taucher S, Pardo R, Del Campo M, Pérez-Jurado L. Preliminary results of a website on genetic consultations and a program of online education in clinical genetics in Chile-0230. 11th International Congress of Human Genetics. 2006.

14. Guio H, Poterico JA, Levano KS, Cornejo-Olivas M, Mazzetti P, Manassero-Morales G, Ugarte-Gil MF, Acevedo-Vásquez E, Dueñas-Roque M, Piscoya A, Fujita R, Sanchez C, Casavilca-Zambrano S, Jaramillo-Valverde L, Sullcahuaman-Allende Y, Iglesias-Pedraz JM, Abarca-Barriga H. Genetics and genomics in Peru: Clinical and researchperspective. Mol GenetGenomicMed. 2018 Nov;6(6):873-886. doi: 10.1002/mgg3.533.

15. Martí Herrero M. Enfoque clínico del niño con dismorfias. Utilidad de un portal de telegenética. Canar Pediátrica 2004;28(2-3):189–94. Disponible en: https://scptfe.com/wp-content/uploads/2020/10/28-2-3-DISMORFIAS_MartiHerrero.pdf.

16. Carreira IM, Ferreira SI, Matoso E, Pires LM, Ferrão J, Jardim A, Mascarenhas A, Pinto M, Lavoura N, Pais C, Paiva P, Simões L, Caramelo F, Ramos L, Venâncio M, Ramos F, Beleza A, Sá J, Saraiva J, de Melo JB. Copy number variants prioritization after array-CGH analysis - a cohort of 1000 patients. Mol Cytogenet. 2015 Dec30;8:103. doi: 10.1186/s13039-015-0202-z.

17. Stalker HJ, Wilson R, McCune H, Gonzalez J, Moffett M, Zori RT. Telegenetic medicine: improved access to services in an underserved area. J Telemed Telecare 2006;12(4):182–5. doi: 10.1258/135763306777488762.

18. Kubendran S, Sivamurthy S, Schaefer GB. A novel approach in pediatric telegenetic services: geneticist, pediatrician and genetic counselor team. Genet Med. 2017 Nov;19(11):1260-1267. doi: 10.1038/gim.2017.45.

19. Botto LD, May K, Fernhoff PM, Correa A, Coleman K, Rasmussen SA, Merritt RK, O'Leary LA, Wong LY, Elixson EM, Mahle WT, Campbell RM. A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics. 2003 Jul;112(1 Pt 1):101-7. doi: 10.1542/peds.112.1.101.

20. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K, Huang S, Maloney VK, Crolla JA, Baralle D, Collins A, Mercer C, Norga K, de Ravel T, Devriendt K, Bongers EM, de Leeuw N, Reardon W, Gimelli S, Bena F, Hennekam RC, Male A, Gaunt L, Clayton-Smith J, Simonic I, Park SM, Mehta SG, Nik-Zainal S, Woods CG, Firth HV, Parkin G, Fichera M, Reitano S, Lo Giudice M, Li KE, Casuga I, Broomer A, Conrad B, Schwerzmann M, Räber L, Gallati S, Striano P, Coppola A, Tolmie JL, Tobias ES, Lilley C, Armengol L, Spysschaert Y, Verloo P, De Coene A, Goossens L, Mortier G, Speleman F, van Binsbergen E, Nelen MR, Hochstenbach R, Poot M, Gallagher L, Gill M, McClellan J, King MC, Regan R, Skinner C, Stevenson RE, Antonarakis SE, Chen C, Estivill X, Menten B, Gimelli G, Gribble S, Schwartz S, Sutcliffe JS, Walsh T, Knight SJ, Sebat J, Romano C, Schwartz CE, Veltman JA, de Vries BB, Vermeesch JR, Barber JC, Willatt L, Tassabehji M, Eichler EE. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med. 2008 Oct 16;359(16):1685-99. doi: 10.1056/NEJMoa0805384.

21. Abarca-Barriga HH, Trubnykova M, Chavesta-Velásquez F, Barletta-Carrillo C, Ordoñez-Linares M, Rondón-Abuhadba A. Peruvian Newborn Male with 3p13 Deletion Syndrome Encompassing the FOXP1 Gene: Review of the Literature. J Pediatr Genet. 2020 Dec;9(4):270-278. doi: 10.1055/s-0039-3402048.

22. Sperry ED, Schuette JL, van Ravenswaaij-Arts CM, Green GE, Martin DM. Duplication 2p25 in a child with clinical features of CHARGE syndrome. Am J Med Genet A. 2016 May;170A(5):1148-54. doi: 10.1002/ajmg.a.37592.

23. Shi S, Lin S, Chen B, Zhou Y. Isolated chromosome 8p23.2‑pter deletion: Novel evidence for developmental delay, intellectual disability, microcephaly and neurobehavioral disorders. Mol Med Rep. 2017 Nov;16(5):6837-6845. doi: 10.3892/mmr.2017.7438.

24. Stark Z, Bruno DL, Mountford H, Lockhart PJ, Amor DJ. De novo 325 kb microdeletion in chromosome band 10q25.3 including ATRNL1 in a boy with cognitive impairment, autism and dysmorphic features. Eur J Med Genet. 2010 Sep-Oct;53(5):337-9. doi: 10.1016/j.ejmg.2010.07.009.

25. Jang W, Kim Y, Han E, Park J, Chae H, Kwon A, Choi H, Kim J, Son JO, Lee SJ, Hong BY, Jang DH, Han JY, Lee JH, Kim SY, Lee IG, Sung IK, Moon Y, Kim M, Park JH. Chromosomal Microarray Analysis as a First-Tier Clinical Diagnostic Test in Patients With Developmental Delay/Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies: A Prospective Multicenter Study in Korea. Ann LabMed. 2019 May;39(3):299-310. doi: 10.3343/alm.2019.39.3.299.

26. Fu C, Luo S, Long X, Li Y, She S, Hu X, Mo M, Wang Z, Chen Y, He C, Su J, Zhang Y, Lin F, Xie B, Li Q, Chen S. Mutation screening of the GLIS3 gene in a cohort of 592 Chinese patients with congenital hypothyroidism. ClinChimActa. 2018 Jan;476:38-43. doi: 10.1016/j.cca.2017.11.011.

27. Rurale G, Persani L, Marelli F. GLIS3 and Thyroid: A Pleiotropic Candidate Gene for Congenital Hypothyroidism. Front Endocrinol (Lausanne). 2018 Nov 29;9:730. doi: 10.3389/fendo.2018.00730.

28. Sonmez FM, Uctepe E, Aktas D, Alikasifoglu M. Microdeletion of chromosome 1q21.3 in fraternal twins is associated with mental retardation, microcephaly, and epilepsy. Intractable Rare Dis Res. 2017 Feb;6(1):61-64. doi: 10.5582/irdr.2016.01075.

29. Johns Hopkins University. OMIM. Online Mendelian Inheritance in Man. 1966-2022.Disponible en:http://www.omim.org/

30. Chrestian N. Hereditary neuropathy with liability to pressure palsies. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. Disponible en: http://www.ncbi.nlm.nih.gov/books/NBK1392/.

31. Conte F, Oti M, Dixon J, Carels CE, Rubini M, Zhou H. Systematic analysis of copy number variants of a large cohort of orofacial cleft patients identifies candidate genes for orofacial clefts. Hum Genet. 2016 Jan;135(1):41-59. doi: 10.1007/s00439-015-1606-x.

32. Davidson TB, Sanchez-Lara PA, Randolph LM, Krieger MD, Wu SQ, Panigrahy A, Shimada H, Erdreich-Epstein A. Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature. BMC Med Genet. 2012 Mar 22;13:19. doi: 10.1186/1471-2350-13-19.

Descargas

Publicado

2022-06-06

Número

Sección

Artículos Originales

Cómo citar

1.
Abarca Barriga HH, Chavesta Velásquez F, Barletta Carrillo C, Paucarmayta Tacuri A, Bazán Hurtado M, Vásquez Loarte T, et al. Variantes en el número de copias y consanguinidad parental en neonatos de altura con anomalías congénitas en Perú. Rev Fac Cien Med Univ Nac Cordoba [Internet]. 2022 Jun. 6 [cited 2024 Dec. 12];79(2):132-40. Available from: https://revistas.unc.edu.ar/index.php/med/article/view/34538

Artículos similares

1-10 de 2105

También puede Iniciar una búsqueda de similitud avanzada para este artículo.