Distribución de plantas nativas y exóticas a lo largo de gradientes de elevación en senderos de montaña en los Andes de Mendoza, Argentina

Autores/as

  • María Alisa Alvarez Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CONICET y Universidad Nacional de Cuyo, Mendoza, Argentina https://orcid.org/0000-0002-5858-7575
  • Lorena de Jesús Bonjour Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET y Universidad Nacional de Cuyo, Mendoza, Argentina https://orcid.org/0000-0003-0245-1481
  • Agustina Barros Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales, CONICET y Universidad Nacional de Cuyo, Mendoza, Argentina https://orcid.org/0000-0002-6810-2391
  • Diego P. Vázquez Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET y Universidad Nacional de Cuyo, Mendoza, Argentina Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina https://orcid.org/0000-0002-3449-5748
  • Valeria Aschero Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales, CONICET y Universidad Nacional de Cuyo, Mendoza, Argentina https://orcid.org/0000-0003-3865-4133

DOI:

https://doi.org/10.31055/1851.2372.v58.n1.38528

Palabras clave:

Andes áridos, montañas, plantas exóticas y nativas, senderos turísticos

Resumen

Introducción y objetivos: El cambio climático, el ganado y el creciente uso turístico favorecen la dispersión de plantas exóticas, amenazando la conservación de los ecosistemas altoandinos. Estudiamos los patrones de distribución de plantas nativas y exóticas en senderos recreativos de montaña.

M&M: Implementamos el protocolo MIREN en seis senderos (2400-3600 m s.n.m.) en dos áreas protegidas de los Andes centrales de Mendoza en las Cordilleras Frontal y Principal.

Resultados: Encontramos 180 especies nativas y 41 exóticas. La riqueza de especies nativas fue máxima a elevaciones intermedias, mientras que la riqueza de exóticas disminuyó con la elevación. La riqueza regional de nativas fue mayor en la Cordillera Frontal que en la Principal (114 versus 71 nativas, respectivamente) mientras que la riqueza regional de exóticas fue menor en la Frontal que en la Principal (20 versus 28 exóticas, respectivamente). La riqueza de exóticas por parcela fue mayor en la Cordillera Frontal que en la Principal. El rango de distribución altitudinal de exóticas fue mayor en la Cordillera Frontal. Dos exóticas abundantes, Taraxacum officinale y Cerastium arvense, estuvieron a lo largo de todo el gradiente en la Cordillera Frontal, alcanzando los 3600 m s.n.m. Encontramos siete exóticas no citadas anteriormente.

Conclusiones: Los nuevos registros amplían los rangos de distribución conocidos para algunas especies exóticas. A pesar de que el número de especies exóticas fue similar cerca y lejos de los senderos, cinco especies sólo estuvieron en los bordes de los mismos, lo que sugiere que los senderos favorecen los procesos de invasión.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AIZEN, M. A., C. L. MORALES & J. M. MORALES. 2008. Invasive Mutualists Erode Native Pollination Webs. Plos Biol. 6: 396-403. https://doi.org/10.1371/journal.pbio.0060031 DOI: https://doi.org/10.1371/journal.pbio.0060031

ALEXANDER, J. M., J. J. LEMBRECHTS, L. A. CAVIERES, C. DAEHLER, S. HAIDER, C. KUEFFER, G. LIU, K. MCDOUGALL, A. MILBAU, A. PAUCHARD, L. J. REW & T. SEIPEL. 2016. Plant Invasions into Mountains and Alpine Ecosystems: Current Status and Future Challenges. Alpine Bot. 126: 89-103. https://doi.org/10.1007/s00035-016-0172-8 DOI: https://doi.org/10.1007/s00035-016-0172-8

ALVAREZ, M. A. 2022. Distribución y abundancia de plantas exóticas a lo largo de gradientes de elevación y de disturbio en ecosistemas altoandinos de Mendoza. Tesis Doctoral. Universidad Nacional de Cuyo, Argentina. DOI: https://doi.org/10.31055/1851.2372.v58.n1.38528

ALVAREZ, M. A., A. BARROS, D. P. VÁZQUEZ, L. DE J. BONJOUR, J. LEMBRECHTS, R. WEDEGÄRTNER & V. ASCHERO. 2022. Hiking and livestock favor non-native plants in the high Andes. Biol. Invasions 24: 3475-3488. https://doi.org/10.1007/s10530-022-02851-1 DOI: https://doi.org/10.1007/s10530-022-02851-1

ANSONG, M. & C. PICKERING. 2013. A global review of weeds that can germinate from horse dung. Ecol. Manag. Restor. 14: 216-23. https://doi.org/10.1111/emr.12057 DOI: https://doi.org/10.1111/emr.12057

ARAYA, T., A. V. MLAHLWA, M. A.M.ABD ELBASIT & S. W. NEWETE. 2022. The impact of Tamarix invasion on the soil physicochemical properties. Sci. Rep.-Uk.12: 1-11. https://doi.org/10.1038/s41598-022-09797-3 DOI: https://doi.org/10.1038/s41598-022-09797-3

ASCHERO, V., A. BARROS, L. BONJOUR & M. C. PÉREZ SOSA. 2017. Invasiones de plantas en caminos vehículares de montaña de los Andes centrales: ¿sobre patas o sobre ruedas? Bol. Soc. Argent. Bot. (Supl.) 52: 100.

ASTUDILLO, P. X., S. BARROS, D. C. SIDDONS & E. ZÁRATE. 2018. Influence of habitat modification by livestock on páramo bird abundance in southern Andes of Ecuador. Stud. Neotrop. 53: 29-37. https://doi.org/10.1080/01650521.2017.1382122 DOI: https://doi.org/10.1080/01650521.2017.1382122

AVERETT, J. P., B. MCCUNE, C. G. PARKS, B. J. NAYLOR, T. DELCURTO & R. MATA-GONZÁLEZ. 2016. Non-native plant invasion along elevation and canopy closure gradients in a middle rocky mountain ecosystem. Plos One 11: 1-24. https://doi.org/10.1371/journal.pone.0147826 DOI: https://doi.org/10.1371/journal.pone.0147826

BALAH, M. 2015. Allelopathic effects of bindweed (Convolvulus arvensis L.) root exudates on plants and soil microflora. Egypt. J. Desert Res. 65: 31-46. https://doi.org/10.21608/ejdr.2015.5776 DOI: https://doi.org/10.21608/ejdr.2015.5776

BALLANTYNE, M. & C. M. PICKERING. 2015. The impacts of trail infrastructure on vegetation and soils: current literature and future directions. J. Environ. Manage. 164: 53-64. https://doi.org/10.1016/j.jenvman.2015.08.032 DOI: https://doi.org/10.1016/j.jenvman.2015.08.032

BARROS, A., V. ASCHERO, A. MAZZOLARI, L. A. CAVIERES & C. M. PICKERING. 2020. Going off trails: how dispersed visitor use affects Alpine vegetation. J. Environ. Manage. 267: 110546. https://doi.org/10.1016/j.jenvman.2020.110546 DOI: https://doi.org/10.1016/j.jenvman.2020.110546

BARROS, A., J. GONNET & C. PICKERING. 2013. Impacts of informal trails on vegetation and soils in the highest protected area in the Southern Hemisphere. J. Environ. Manage. 127: 50-60. https://doi.org/10.1016/j.jenvman.2013.04.030 DOI: https://doi.org/10.1016/j.jenvman.2013.04.030

BARROS, A. & C. M. PICKERING. 2017. How networks of informal trails cause landscape level damage to vegetation. J. Environ. Manage. 60: 57-68.

https://doi.org/10.1007/s00267-017-0865-9 DOI: https://doi.org/10.1007/s00267-017-0865-9

BARROS, A. & C. M. PICKERING. 2014. Non-native plant invasion in relation to tourism use of Aconcagua Park, Argentina, the highest protected area in the Southern Hemisphere. Mt. Res. Dev. 34: 13-26. https://doi.org/10.1659/mrd-journal-d-13-00054.1 DOI: https://doi.org/10.1659/MRD-JOURNAL-D-13-00054.1

BARROS, A. & C. M. PICKERING. 2015. Impacts of experimental trampling by hikers and pack animals on a high-altitude Alpine sedge meadow in the Andes. Plant Ecol. Diver. 8: 265-276. https://doi.org/10.1080/17550874.2014.893592 DOI: https://doi.org/10.1080/17550874.2014.893592

BROOKS, M. E, K. KRISTENSEN, K. J. VAN BENTHEM, A. MAGNUSSON, C. W. BERG, A. NIELSEN, H. J. SKAUG, M. MÄCHLER & B. M. BOLKER. 2017. Glmmtmb balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9: 378-400. https://doi.org/10.3929/ethz-b-000240890 DOI: https://doi.org/10.32614/RJ-2017-066

BRUCKMAN, D. & D. R. CAMPBELL. 2016. Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion. Am. J. Bot. 103: 1458-1465. https://doi.org/10.3732/ajb.1600153 DOI: https://doi.org/10.3732/ajb.1600153

BUCKLEY, R. 2006. Adventure tourism. CAB International, London. DOI: https://doi.org/10.1079/9781845931223.0000

CARBONI, M., M. GUÉGUEN, C. BARROS, D. GEORGES, I. BOULANGEAT, R. DOUZET, S. DULLINGER, G. KLONNER, M. VAN KLEUNEN, F. ESSL, O. BOSSDORF, E. HAEUSER, M. V. TALLUTO, D. MOSER, S. BLOCK, L. CONTI, I. DULLINGER, T. MÜNKEMÜLLER & W. THUILLER. 2018. Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Glob. Chang. Biol. 24: 289-302. https://doi.org/10.1111/gcb.13879 DOI: https://doi.org/10.1111/gcb.13879

CHARDON, N. I., C. RIXEN, S. WIPF & D. F. DOAK. 2019. Human trampling disturbance exerts different ecological effects at contrasting elevational range limits. J. Appl. Ecol. 56: 1389-1399. https://doi.org/10.1111/1365-2664.13384 DOI: https://doi.org/10.1111/1365-2664.13384

CHARDON, N. I., S. WIPF, C. RIXEN, A. BEILSTEIN & D. F. DOAK. 2018. Local trampling disturbance effects on Alpine plant populations and communities: negative implications for climate change vulnerability. Int. J. Bus. Innov. 17: 7921-7935. https://doi.org/10.1002/ece3.4276. DOI: https://doi.org/10.1002/ece3.4276

CRESPO, S., J. ARANIBAR, L. GOMEZ, M. SCHWIKOWSKI, S. BRUETSCH, L. CARA & R. VILLALBA. 2017. Ionic and stable isotope chemistry as indicators of water sources to the upper Mendoza river basin, Central Andes of Argentina. Hydrol. Sci. J. 62: 588-605. https://doi.org/10.1080/02626667.2016.1252840 DOI: https://doi.org/10.1080/02626667.2016.1252840

DACAR, M. A., A. D. DALMASSO, S. Y. BOBADILLA & M. F. CUEVAS. 2019. Rol del ganado doméstico en el establecimiento de la especie invasora rosa mosqueta (Rosa rubiginosa L.) en los Andes áridos, Argentina. Mastozool. Neotrop. 26: 331-339. https://doi.org/10.31687/saremmn.19.26.2.0.17 DOI: https://doi.org/10.31687/saremMN.19.26.2.0.17

DARWIN, C. 1859. On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. John Murray, London. DOI: https://doi.org/10.5962/bhl.title.82303

DAVIS, M. A., J. P. GRIME & K. THOMPSON. 2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Eco. 88: 528-534. https://doi.org/10.1046/j.1365-2745.2000.00473.x DOI: https://doi.org/10.1046/j.1365-2745.2000.00473.x

DOMIC, A. I., J. M. CAPRILES, K. ESCOBAR-TORREZ, C. M. SANTORO & A. MALDONADO. 2018. Two thousand years of land-use and vegetation evolution in the Andean highlands of northern Chile inferred from pollen and charcoal analyses. Quat. 1: 1-20. https://doi.org/10.3390/quat1030032 DOI: https://doi.org/10.3390/quat1030032

FRANZESE, J. & L. GHERMANDI. 2014. Early competition between the exotic herb Rumex acetosella and two native tussock grasses with different palatability and water stress tolerance. J. Arid Environ. 106: 58-62. https://doi.org/10.1016/j.jaridenv.2014.03.004 DOI: https://doi.org/10.1016/j.jaridenv.2014.03.004

FUENTES, N., P. SÁNCHEZ, A. PAUCHARD, J. URRUTIA & L. CAVIERES. 2014. Plantas invasoras del centro-sur de Chile: una guía de campo. Laboratorio de Invasiones Biológicas (LIB), Concepción.

GAERTNER, M., D. M. RICHARDSON & S. D. J. PRIVETT. 2011. Effects of alien plants on ecosystem structure and functioning and implications for restoration: insights from three degraded sites in South African fynbos. J. Environ. Manage. 48: 57-69. https://doi.org/10.1007/s00267-011-9675-7 DOI: https://doi.org/10.1007/s00267-011-9675-7

GOODELL, K. & I. M. PARKER. 2017. Invasion of a dominant floral resource: effects on the floral community and pollination of native plants. Ecol. 98: 57-69. https://doi.org/10.1002/ecy.1639 DOI: https://doi.org/10.1002/ecy.1639

GRYTNES, J. A. & C. M. MCCAIN. 2013. Elevational Trends in Biodiversity. En: LEVIN S. A. (ed.), Encyclopedia of Biodiversity, 2nd. ed., pp. 149-54. Academic Press, Cambridge.

https://doi.org/10.1016/B978-0-12-384719-5.00227-6 DOI: https://doi.org/10.1016/B978-0-12-384719-5.00227-6

HAIDER, S., C. KUEFFER, H. BRUELHEIDE, T. SEIPEL, J. M. ALEXANDER, L. J. REW, J. R. ARÉVALO, et al. 2018. Mountain roads and non-native species modify elevational patterns of plant diversity. Glob. Ecol. Biogeogr. 27: 667-678. https://doi.org/10.1111/geb.12727 DOI: https://doi.org/10.1111/geb.12727

HAUTIER, YANN, FOREST ISBELL, ELIZABETH T BORER, ERIC W SEABLOOM, W STANLEY HARPOLE, ERIC M LIND, ANDREW S MACDOUGALL, A. MILBAU, B. J. NAYLOR, K. SPEZIALE & A. PAUCHARD. 2017. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Ecol. Evol. 2: 50-56. https://doi.org/10.1038/s41559-017-0395-0. DOI: https://doi.org/10.1038/s41559-017-0395-0

HERRERA, I., E. GONCALVES, A. PAUCHARD & R. O. BUSTAMANTE. 2016. Manual de Plantas Invasoras de Sudamérica. Laboratorio de Invasiones Biológicas (LIB), Concepción.

HOKE, G. D., J. N. ARANIBAR, M. VIALE, D. C. ARANEO & C. LLANO. 2013. Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5-35.5°S. Geochem. Geophys. 14: 962-978. https://doi.org/10.1002/ggge.20045 DOI: https://doi.org/10.1002/ggge.20045

INSTITUTO DE BOTÁNICA DARWINION. 2018. Flora Argentina. Disponible en: http://www.floraargentina.edu.ar/ [Acceso día mes año]

IPCC. 2021. Special report on the ocean and cryosphere in a changing climate. Disponible en: https://www.ipcc.ch/srocc/ [Acceso día mes año]

JOSLIN, A. 2021. Intersections of conservation, cattle, and culture in Ecuador’s Páramo grasslands. Mt. Res. Dev. 41: R1-R7. https://doi.org/10.1659/MRD-JOURNAL-D-21-00015.1 DOI: https://doi.org/10.1659/MRD-JOURNAL-D-21-00015.1

KÖRNER, C. 2007. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22: 569-574. https://doi.org/10.1016/j.tree.2007.09.006 DOI: https://doi.org/10.1016/j.tree.2007.09.006

KOWARIK, I. & M. VON DER LIPPE. 2007. Pathways in Plant Invasions. En: NENTWIG, W. (ed.), Biological Invasions, Ecological Studies, vol. 193: 29-47. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-540-36920-2 DOI: https://doi.org/10.1007/978-3-540-36920-2_3

LENOIR, J., J. C. GÉGOUT, A. GUISAN, P. VITTOZ, T. WOHLGEMUTH, K. E. ZIMMERMANN, S. DULLINGER, H. PAULI, W. WILLNER & J. CHRISTIAN SVENNING. 2010. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33: 295-303. https://doi.org/10.1111/j.1600-0587.2010.06279.x DOI: https://doi.org/10.1111/j.1600-0587.2010.06279.x

LENOIR, J., T. HATTAB & G. PIERRE. 2017. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography 40: 253-66. https://doi.org/10.1111/ecog.02788 DOI: https://doi.org/10.1111/ecog.02788

LEVINE, J. M. 2000. Species diversity and biological invasions: relating local process to community pattern. Science 288: 852-854. https://doi.org/10.1126/science.288.5467.852 DOI: https://doi.org/10.1126/science.288.5467.852

LIEDTKE, R., A. BARROS, F. ESSL, J. J. LEMBRECHTS, R. E. M. WEDEGÄRTNER, A. PAUCHARD & S. DULLINGER. 2020. Hiking trails as conduits for the spread of non-native species in mountain areas. Biol. Invasions 22: 1121-1134. https://doi.org/10.1007/s10530-019-02165-9 DOI: https://doi.org/10.1007/s10530-019-02165-9

LOYDI, A. & S. MARTÍN ZALBA. 2009. Feral horses dung piles as potential invasion windows for alien plant species in natural grasslands. Plant Ecol. 201: 4714-4780. https://doi.org/10.1007/s11258-008-9468-0 DOI: https://doi.org/10.1007/s11258-008-9468-0

LUCAS-BORJA, M. E., F. BASTIDA, J. L. MORENO, C. NICOLÁS, M. ANDRES, F. R. LÓPEZ & A. DEL CERRO. 2011. The effects of human trampling on the microbiological properties of soil and vegetation in mediterranean mountain areas. Land Degrad. Dev. 22: 383-394. https://doi.org/10.1002/ldr.1014 DOI: https://doi.org/10.1002/ldr.1014

LÜDECKE, D. 2021. Create Tidy Data Frames of Marginal Effects for ‘ggplot’ from Model Outputs. Package ‘Ggeffects’. Disponible en: https://strengejacke.github.io/ggeffects/

MAITRE, D. C. LE, M. B. GUSH & S. DZIKITI. 2015. Impacts of invading alien plant species on water flows at stand and catchment scales. AoB Plants 7: 1-21. https://doi.org/10.1093/aobpla/plv043 DOI: https://doi.org/10.1093/aobpla/plv043

MAZZOLARI, A. C. 2017. Análisis de factores que contribuyen a la invasión de rosa mosqueta (Rosa canina y R. rubiginosa) en Mendoza. Tesis Doctoral. Universidad Nacional de Cuyo, Argentina. https://ri.conicet.gov.ar/handle/11336/104974

MCDOUGALL, K. L., J. M. ALEXANDER, S. HAIDER, A. PAUCHARD, N. G. WALSH & C. KUEFFER. 2011. Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers. Distrib. 17: 103-111. https://doi.org/10.1111/j.1472-4642.2010.00713.x DOI: https://doi.org/10.1111/j.1472-4642.2010.00713.x

MÉNDEZ, E. 2004. La vegetación de los altos Andes I. Pisos de vegetación del flanco oriental del Cordón del Plata (Mendoza, Argentina). Bol. Soc. Argent. Bot. 46: 317-353.

MÉNDEZ, E. 2009. Biodiversidad de la flora del flanco oriental del Cordón del Plata (Luján de Cuyo, Mendoza, Argentina). Catálogo Florístico. Bol. Soc. Argent. Bot. 44: 75-102.

MÉNDEZ, E., E. MARTÍNEZ & I. PERALTA. 2006. La vegetación del Parque Provincial Aconcagua (altos Andes centrales de Mendoza, Argentina). Bol. Soc. Argent. Bot. 41: 41-69.

MENGIST, W., T. SOROMESSA & G. LEGESE. 2020. Ecosystem services research in mountainous regions: a systematic literature review on current knowledge and research gaps. Sci. Total Environ. 702: 134581. https://doi.org/10.1016/j.scitotenv.2019.134581 DOI: https://doi.org/10.1016/j.scitotenv.2019.134581

MORELLO, J., S. MATTEUCCI, A. RODRIGUEZ & M. SILVA. 2012. Ecorregiones y complejos ecosistemicos argentinos. Orientación Gráfica Editora, Buenos Aires.

MUÑOZ, A. A. & L. A. CAVIERES. 2008. The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. J. Ecol. 96: 459-467. https://doi.org/10.1111/j.1365-2745.2008.01361.x DOI: https://doi.org/10.1111/j.1365-2745.2008.01361.x

NATALE, E., S. M. ZALBA, A. OGGERO & H. REINOSO. 2010. Establishment of Tamarix ramosissima under different conditions of salinity and water availability: implications for its management as an invasive species. J. Arid. Environ. 74: 1399-1407. https://doi.org/10.1016/j.jaridenv.2010.05.023 DOI: https://doi.org/10.1016/j.jaridenv.2010.05.023

PAUCHARD, A., C. KUEFFER, H. DIETZ, C. C. DAEHLER, J. ALEXANDER, P. J. EDWARDS, J. R. ARÉVALO, L. A. CAVIERES, A. GUISAN, S. HAIDER, G. JAKOBS, K. MCDOUGALL, C. I. MILLAR, B. J. NAYLOR, C. G. PARKS, L. J. REW & T. SEIPEL. 2009. Ain’t no mountain high enough: plant invasions reaching new elevations. Front. Ecol. Environ. 7: 479-486. https://doi.org/10.1890/080072 DOI: https://doi.org/10.1890/080072

PEARSON, D. E. 2008. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior. Oecologia 159: 549-558.

https://doi.org/10.1007/s00442-008-1241-5 DOI: https://doi.org/10.1007/s00442-008-1241-5

PEPIN, N., R. S. BRADLEY, H. F. DIAZ, M. BARAER, E. B. CACERES, N. FORSYTHE, H. FOWLER, G. GREENWOOD, M. Z. HASHMI, X. D. LIU, J. R. MILLER, L. NING, A. OHMURA, E. PALAZZI, I. RANGWALA, W. SCHÖNER, I. SEVERSKIY, M. SHAHGEDANOVA, M. B. WANG, S. N. WILLIAMSON & D. Q. YANG. 2015. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change. 5: 424-430. https://doi.org/10.1038/nclimate2563 DOI: https://doi.org/10.1038/nclimate2563

PÉREZ, F. L. 1992. The ecological impact of cattle on caulescent Andean rosettes in a high Venezuelan Paramo. Mt. Res. Dev. 12: 29-46. https://doi.org/10.2307/3673746 DOI: https://doi.org/10.2307/3673746

PERRIGO, A., C. HOORN & A. ANTONELLI. 2020. Why mountains matter for biodiversity. J. Biogeogr. 47: 315-325. https://doi.org/10.1111/jbi.13731 DOI: https://doi.org/10.1111/jbi.13731

PICKERING, C. M. & A. MOUNT. 2010. Do tourists disperse weed seed? A global review of unintentional human-mediated terrestrial seed dispersal on clothing, vehicles and horses. J. Sustain. Tour. 18: 239-256. https://doi.org/10.1080/09669580903406613 DOI: https://doi.org/10.1080/09669580903406613

QUINN, L. D., A. QUINN, M. KOLIPINSKI, B. DAVIS, C. BERTO, M. ORCHOLSKI & S. GHOSH. 2010. Role of horses as potential vectors of non-native plant invasion: an overview. Nat. Areas J. 30: 408-416. https://doi.org/10.3375/043.030.0406 DOI: https://doi.org/10.3375/043.030.0406

R CORE TEAM. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Disponible en: https://www.r-project.org/

RANGWALA, I. & J. R. MILLER. 2012. Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim. Change 114: 527-547. https://doi.org/10.1007/s10584-012-0419-3 DOI: https://doi.org/10.1007/s10584-012-0419-3

ROIG, F. A., E. M. ABRAHAM & E. MÉNDEZ. 2007. Vegetation belts, cold and soil freezing in the central Andes of Mendoza, Argentina. Phytocoenologia 37: 99-114. https://doi.org/10.1127/0340-269X/2007/0037-0099 DOI: https://doi.org/10.1127/0340-269X/2007/0037-0099

SEIPEL, T., C. KUEFFER, L. J. REW, C. C. DAEHLER, A. PAUCHARD, B. J. NAYLOR, J. M. ALEXANDER, P. J. EDWARDS, C. G. PARKS, J. R. AREVALO, L. A. CAVIERES, H. DIETZ, G. JAKOBS, K. MCDOUGALL, R. OTTO & N. WALSH. 2012. Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world. Glob. Ecol. Biogeogr. 21: 236-246. https://doi.org/10.1111/j.1466-8238.2011.00664.x DOI: https://doi.org/10.1111/j.1466-8238.2011.00664.x

TROMBOTTO, D., E. BUK & J. HERNÁNDEZ. 1997. Monitoring of mountain permafrost in the central Andes, Cordón del Plata, Mendoza, Argentina. Permafr. Periglac. 8: 123-129. https://doi.org/10.1002/(SICI)1099-1530(199701)8:1<123::AID-PPP242>3.0.CO;2-M DOI: https://doi.org/10.1002/(SICI)1099-1530(199701)8:1<123::AID-PPP242>3.0.CO;2-M

TROMBOTTO, D., N. SILEO & C. DAPEÑA. 2020. Periglacial water paths within a rock glacier-dominated catchment in the Stepanek area, central Andes, Mendoza, Argentina. Permafr. Periglac. 31: 311-323. https://doi.org/10.1002/ppp.2044 DOI: https://doi.org/10.1002/ppp.2044

VALTONEN, A., J. JANTUNEN & K. SAARINEN. 2006. Flora and lepidoptera fauna adversely affected by invasive Lupinus polyphyllus along road verges. Biol. Conserv. 133: 389-96. https://doi.org/10.1016/j.biocon.2006.06.015 DOI: https://doi.org/10.1016/j.biocon.2006.06.015

VERRALL, B. & C. M. PICKERING. 2020. Alpine vegetation in the context of climate change: a global review of past research and future directions. Sci. Total Environ. 748: 141344. https://doi.org/10.1016/j.scitotenv.2020.141344 DOI: https://doi.org/10.1016/j.scitotenv.2020.141344

WEDEGÄRTNER, R. E. M., J. J. LEMBRECHTS, R. VAN DER WAL, A. BARROS, A. CHAUVIN, I. JANSSENS & B. JESSEN. 2022. Hiking trails shift plant species’ realized climatic niches and locally increase species richness. Divers. Distrib. 28:1416-1429. https://doi.org/10.1111/ddi.13552 DOI: https://doi.org/10.1111/ddi.13552

WELLS, F. H. & W. K. LAUENROTH. 2007. The potential for horses to disperse alien plants along recreational trails. Rangel. Ecol. Manag. 60: 574-577. https://doi.org/10.2111/06-102R1.1 DOI: https://doi.org/10.2111/06-102R1.1

YANG, M., Z. LU, Z. FAN, X. LIU, L. HENS, R. DE WULF & X. OU. 2018. Distribution of non-native plant species along elevation gradients in a protected area in the eastern Himalayas, China. Alp. Bot. 128: 169-178. https://doi.org/10.1007/s00035-018-0205-6 DOI: https://doi.org/10.1007/s00035-018-0205-6

Descargas

Publicado

2023-03-23

Cómo citar

Alvarez, María Alisa, Lorena de Jesús Bonjour, Agustina Barros, Diego P. Vázquez, y Valeria Aschero. 2023. «Distribución De Plantas Nativas Y exóticas a Lo Largo De Gradientes De elevación En Senderos De montaña En Los Andes De Mendoza, Argentina». Boletín De La Sociedad Argentina De Botánica 58 (1). https://doi.org/10.31055/1851.2372.v58.n1.38528.

Número

Sección

Número Especial: Ecología