Doença de coronavírus (COVID-19) e sirtuínas

Autores

DOI:

https://doi.org/10.31053/1853.0605.v77.n2.28196

Palavras-chave:

Infecções por Coronavirus, neoplasias, Inibidores de Histona, Desacetilases, NAD, Sirtuinas

Resumo

As proteínas desacetilases dependentes de NAD + são chamadas Sirtuins (SIRT).

Objetivos: destarevisão é estudar as sirtuínas envolvidas no câncer, bem como estudos de inibição da SIRT1 em pacientes com doença de coronavírus COVID-19.

Fonte e seleção dos dados: Para isso, foi realizada uma pesquisa no Medline, Scopus e WOS, onde foram incluídos estudos descritivos de cada uma das funções das sirtuínas, ajustados às pesquisas científicas recentes. À inibição da SIRT1 diminui a citotoxicidade das células T CD8 em pacientes com Lúpus Eritematoso Sistêmico sendo suscetível a infecções por SARS Cov-2. O SIRT2 é regulado pela secreção de IL-4 pelos eosinófilos e o aumento do SIRT2 aumenta a hiperplasia, enquanto o SIRT3 promove a angiogênese, induzindo a remodelação cardíaca. SIRT4 é um supressor de tumor, em contraste com o SIRT5, que promove a proliferação celular causando cáncer colorretal; O SIRT6 atenua o vírus do herpes associadoao Sarcoma de Kaposi (KSHV) em pacientes imunocomprometidos. A supressão de SIRT7 inibe o crescimento de células cancerígenas endometriais.

Conclusões: Conclui-se que SIRT1, SIRT2 e SIRT4 estão envolvidos no desenvolvimento do câncer, a supressão de SIRT5 e SIRT7 promove a apoptose das células cancerígenas e o SIRT6 atenua a replicação do KSHV, alémdisso, a via da patologia molecular do COVID-19 é associado à inibição da atividade da SIRT1 que pode estar relacionada a procesos inflamatórios.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Ronald Eleazar Huarachi Olivera, Laboratorio de Biotecnologia Celular y Molecular Avanzada, Universidad Nacional de San Agustìn

    Autor principal del articulo de revision, Magister en Biotecnologia y estudiante del Doctorado en Ciencias Biologicas mencion Biologìa Celular y Molecular de la Facultad de Ciencias Biològicas de la Universidad de Antofagasta de Chile

  • Antonio Lazarte Rivera, Laboratorio de Biotecnología Celular y Molecular Avanzada (LAB-BIOTCEMA), Universidad Nacional de San Agustìn, Arequipa Perù

    Profesor de la Facultad de Ciencias Biologicas de la Universidad Nacional de San Agustin de Arequipa, Responsable de LAB-BIOTCEMA

Referências

Al-Khaldi A, Sultan S. The expression of sirtuins, superoxide dismutase, and lipid peroxidation status in peripheral blood from patients with diabetes and hypothyroidism. BMC endocrine disorders. 2019; 19(1), 19. Doi: https://doi.org/10.1186/s12902-019-0350-y

Amano H, Chaudhury A, Rodriguez-Aguayo C, Lu L, Akhanov V, Catic A,.. Sinclair DA. Telomere Dysfunction Induces Sirtuin Repression that Drives Telomere-Dependent Disease. Cell metabolism. 2019;. Doi: https://doi.org/10.1016/j.cmet.2019.03.001

Amano H, Sahin E. Telomeres and sirtuins: at the end we meet again. Molecular & cellular oncology. 2019; 6(5), e1632613. DOI: https://doi.org/10.1080/23723556.2019.1632613

Antonucci S, Mulvey JF, Burger N, Di Sante M, Hall AR, Hinchy EC....& Kaludercic N. Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis. Free Radical Biology and Medicine. 2019; 134: 678-687 DOI: https://doi.org/10.1016/j.freeradbiomed.2019.01.034

Bartolomucci A. Social stress, immunefunctions and disease in rodents. Front. Neuroendocrinol. 2007; 28, 28–49. DOI: https://doi.org/10.1016/j.yfrne.2007.02.001

Baig, A.M., Khaleeq, A., Ali, U., Syeda, H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS chemical neuroscience. 2020; 11, 7, 995-998. Doi: https://doi.org/10.1021/acschemneuro.0c00122

Bayne S, Liu JP. Hormones and growth factors regulate telomerase activity in ageing and cancer. Molecular and cellular endocrinology, 2005; 240(1-2), 11-22. DOI: https://doi.org/10.1016/j.mce.2005.05.009

Beckman KB, Ames BN. Oxidative decay of DNA. Journal of Biological Chemistry, 1997; 272(32), 19633-19636. DOI: https://doi.org/10.1074/jbc.272.32.19633

Belser, J.A., Rota, P. A., Tumpey, T.M. Ocular tropism of respiratory viruses. Microbiol. Mol. Biol. Rev., 2013; 77(1), 144-156. doi: 10.1128/MMBR.00058-12

Bohus, B., Koolhaas, J.M., De Ruiter, A.J., Heijnen, C.J., Stress and differential alterations in immune system functions: conclusions from social stress studies in animals. Neth. J. Med. 1991; 39, 306–315.

Dai, Q., Zheng, Z., Xia, F., Liu, P., & Li, M. A one-step specific assay for continuous detection of sirtuin 2 activity. Acta Pharmaceutica Sinica. B. 2019; 9(6), 1183. Doi: https://doi.org/10.1016/j.apsb.2019.05.007

de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003; 370:737-749. Doi: https://doi.org/10.1042/BJ20021321

Deng, Z., Li, Y., Liu, H., Xiao, S., Li, L., Tian, J., ... & Zhang, F. The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Bioscience reports. 2019; 39(5), BSR20190189. Doi: https://doi.org/10.1042/BSR20190189

Dizdaroglu, M., Jaruga, P., Birincioglu, M., & Rodriguez, H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radical Biology and Medicine. 2002; 32(11), 1102-1115. Doi: https://doi.org/10.1016/S0891-5849(02)00826-2

Farghali, H., Kemelo, M.K., & Canová, N.K. SIRT1 Modulators in Experimentally Induced Liver Injury. Oxidative Medicine and Cellular Longevity. 2019. Doi: https://doi.org/10.1155/2019/8765954

Feldman, J.L., & Peterson, C.L. Yeast Sirtuin Family Members Maintain Transcription Homeostasis to Ensure Genome Stability. Cell reports. 2019; 27(10), 2978-2989. Doi: https://doi.org/10.1016/j.celrep.2019.05.009

Gok, O., Karaali, Z., Ergen, A., Ekmekci, S. S., & Abaci, N. Serum sirtuin 1 protein as a potential biomarker for type 2 diabetes: Increased expression of sirtuin 1 and the correlation with microRNAs. Journal of Research in Medical Sciences. 2019; 24(1), 56. DOI: 10.4103/jrms.JRMS_921_18

Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes & development. 2000; 14(9), 1021-1026. Doi: 10.1101/gad.14.9.1021

Guedouari, H., Daigle, T., Scorrano, L., & Hebert-Chatelain, E. Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2017; 1864(1), 169-176. DOI: 10.1016/j.bbamcr.2016.10.015

Heydari AR, Unnikrishnan A, Lucente LV, Richardson A. Caloric restriction and genomic stability. Nucleic Acids Res. 2007; 35: 7485-7496. Doi: https://doi.org/10.1093/nar/gkm860

Hu, M., Armstrong, N., Seto, E., Li, W., Zhu, F., Wang, P. C., & Tang, Q. Sirtuin 6 Attenuates Kaposi’s Sarcoma–associated herpesvirus (KSHV) Reactivation via Suppressing the Ori-Lyt Activity and Expression of RTA. Journal of virology, 2019; JVI-02200. Doi: 10.1128/JVI.02200-18

Huang, G., & Zhu, G. Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. OncoTargets and therapy, 2018; 11, 3395. Doi: https://doi.org/10.2147/ott.s157724

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC monographs on the evaluation of carcinogenic risks to humans. 2004; 85, 1.

Igci, M., Kalender, M. E., Borazan, E., Bozgeyik, I., Bayraktar, R., Bozgeyik, E., ... & Arslan, A. High-throughput screening of Sirtuin family of genes in breast cancer. Gene. 2016; 586(1), 123-128. doi: 10.1016/j.gene.2016.04.023

Islam, S., Abiko, Y., Uehara, O., & Chiba, I. Sirtuin 1 and oral cancer. Oncology letters, 2019; 17(1), 729-738. DOI: https://doi.org/10.3892/ol.2018.9722

Johnson T.E., Lithgow G.J., Murakami S. Hypothesis: Interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J Gerontol Biol Sci; 1996; 51A:B392-B395. DOI: https://doi.org/10.1093/gerona/51a.6.b392

Kitada, M., Ogura, Y., Monno, I., & Koya, D. Sirtuins and Type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function. Frontiers in Endocrinology, 2019; 10. DOI: 10.3389/fendo.2019.00187

Klein, M.A., Liu, C., Kuznetsov, V. I., Feltenberger, J.B., Tang, W., & Denu, J. M. Mechanism of activation for the sirtuin 6 protein deacylase. Journal of Biological Chemistry, 2019; jbc-RA119. DOI: 10.1074/jbc.RA119.011285

Koentges, C., Pfeil, K., Schnick, T., Wiese, S., Dahlbock, R., Cimolai, M. C., ... & Odening, K.E. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic research in cardiology, 2015; 110(4), 36. DOI: 10.1007/s00395015-0493-6.

Koolhaas, J. M., Bartolomucci, A., Buwalda, B. D., De Boer, S. F., Flügge, G., Korte, S. M., ... & Richter-Levin, G. Stress revisited: a critical evaluation of the stress concept. Neuroscience & Biobehavioral Reviews 2011; 35(5), 1291 - 1301. DOI: 10.1016/j.neubiorev.2011.02.003

Kouhpayeh, S., Shariati, L., Boshtam, M., Rahimmanesh, I., Mirian, M., Zeinalian, M., ... & Khanahmad, H. The Molecular Story of COVID-19; NAD+ Depletion Addresses All Questions in this Infection. (2020). doi:10.20944/preprints202003.0346.v1

Kume, S., Haneda, M., Kanasaki, K., Sugimoto, T., Araki, S. I., Isshiki, K., ... & Koya, D. SIRT1 inhibits transforming growth factor β-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. Journal of Biological Chemistry. 2007; 282(1), 151-158. Doi: 10.1074/jbc.M605904200

Kurylowicz, A. Role of Sirtuins in Adipose Tissue Development and Metabolism. In Adipose Tissue-An Update. IntechOpen. 2019; Doi: 10.5772/intechopen.88467

Lee, S.H., Lee, J.H., Lee, H.Y., & Min, K.J. Sirtuin signaling in cellular senescence and aging. BMB reports. 2019a; 52(1)24. Doi: https://doi.org/10.5483/BMBRep.2019.52.1.290

Lee, Y.G., Reader, B.F., Herman, D., Streicher, A., Englert, J.A., Ziegler, M., ... & Ballinger, M.N. Sirtuin 2 enhances allergic asthmatic inflammation. JCI insight. 2019; 4(4). Doi: https://doi.org/10.1172/jci.insight.124710

Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., ... & Zhang, Q. Coronavirus infections and immune responses. Journal of medical virology, 2020; 92(4), 424-432. Doi: https://doi.org/10.1002/jmv.25685

Lithgowl, G.J. Hormesis—a new hope for ageing studies or a poor second to genetics?. Human & experimental toxicology, 2001; 20(6), 301-303. Doi: https://doi.org/10.1191/096032701701548098

Liu, J., Godlewski, G., Jourdan, T., Liu, Z., Cinar, R., Xiong, K., & Kunos, G. Cannabinoid‐1 Receptor Antagonism Improves Glycemic Control and Increases Energy Expenditure Through Sirtuin‐1/Mechanistic Target of Rapamycin Complex 2 and 5′ Adenosine Monophosphate–Activated Protein Kinase Signaling. Hepatology. 2019; 69(4), 1535-1548. Doi: https://doi.org/10.1002/hep.30364

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., ... & Bi, Y. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 2020a; 395(10224), 565-574. Doi: https://doi.org/10.1016/S0140-6736(20)30251-8

Lu, C. W., Liu, X.F., & Jia, Z. F. 2019-nCoV transmission through the ocular surface must not be ignored. The Lancet, 2020b; 395(10224), e39. Doi: https://doi.org/10.1016/S0140-6736(20)30313-5

Mao, S., Ma, J., Yu, H. Sirtuin‑7 knockdown inhibits the growth of endometrial cancer cells by inducing apoptosis via the NF‑κB signaling pathway. Oncology letters. 2019; 17(1), 937-943. Doi: 10.3892/ol.2018.9698

McEwen B, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Int Med. 1993; 153:2093–2101. Doi:10.1001/archinte.1993.00410180039004

Murray, C.J. Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months. medRxiv. 2020; Doi: https://doi.org/10.1101/2020.03.27.20043752

Nakagawa, T., & Guarente, L. Sirtuins at a glance. J Cell Sci, 2011; 124(6), 833-838. Doi: 10.1242/jcs.081067

Netland, J., Meyerholz, D. K., Moore, S., Cassell, M., & Perlman, S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. Journal of virology, 2008; 82(15), 7264-7275.

Doi: https://doi.org/10.1128/JVI.00737-08

Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol.; 2010; 191 (1299-1313). Doi:10.1083/jcb.201005160

Park, H. K., Hong, J. H., Oh, Y. T., Kim, S. S., Yin, J., Lee, A. J., ... & Park, M. J. Interplay between TRAP1 and sirtuin-3 modulates mitochondrial respiration and oxidative stress to maintain stemness of glioma stem cells. Cancer research. 2019; 79(7), 1369-1382. Doi: 10.1158/0008-5472.CAN-18-2558

Perrod S., Gasser S.M. Long-range silencing and position effects at telomeres and centromeres: parallels and differences. Cell Mol Life Sci. 2003; 60(2303–2318). Doi:10.1007/s00018-003-3246-x.

Poli, G., Leonarduzzi, G., Biasi, F., Chiarpotto, E. Oxidative stress and cell signalling. Current medicinal chemistry. 2004; 11(9), 1163-1182. Doi: 10.2174/0929867043365323

Rahnasto-Rilla, M., Tyni, J., Huovinen, M., Jarho, E., Kulikowicz, T., Ravichandran, S., ... & Moaddel, R. Natural polyphenols as sirtuin 6 modulators. Scientific reports. 2018; 8(1), 4163. Doi: https://doi.org/10.1038/s41598-018-22388-5

Sapolsky, R.M., Social subordinance as a marker of hypercortisolism. Some unexpected subtleties. Ann. N.Y. Acad. Sci. 1995; 771, 626–639. Doi: 10.1111/j.1749-6632.1995.tb44715.x

Seto E., Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014; 6:a018713 Doi: 10.1101/cshperspect.a018713

Shi, Q., Liu, T., Zhang, X., Geng, J., He, X., Nu, M., Pang, D. Decreased sirtuin 4 expression is associated with poor prognosis in patients with invasive breast cancer. Oncology letters. 2016; 12(4), 2606-2612. Doi: https://doi.org/10.3892/ol.2016.5021

Shimabukuro-Vornhagen, A., Gödel, P., Subklewe, M., Stemmler, H.J., Schlößer, H.A., Schlaak, M., ... & von Bergwelt-Baildon, M.S. Cytokine release syndrome. Journal for immunotherapy of cancer, 2018;. 6(1), 56. Doi: https://doi.org/10.1186/s40425-018-0343-9

Smith, J.M. Prolongation of the life of Drosophila subobscura by a brief exposure of adults to a high temperature. Nature, 1958; 181(4607), 496. Doi: 10.3892/ol.2016.5021

Sundaresan N.R., Gupta M., Kim G., Rajamohan S.B., Isbatan A., Gupta M.P. SIRT3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758–2771. Doi: 10.1172/JCI39162.

Tennen R.I., Chua K.F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem Sci. 2011; 36 (39–46). Doi:10.1016/j.tibs.2010.07.009.

Vargas-Ortiz, K., Pérez-Vázquez, V., & Macías-Cervantes, M.H. Exercise and Sirtuins: A Way to Mitochondrial Health in Skeletal Muscle. International journal of molecular sciences, 2019; 20(11), 2717. Doi: https://doi.org/10.3390/ijms20112717

Wang, Y.Q., Wang, H.L., Xu, J., Tan, J., Fu, L. N., Wang, J.L., ... & Fang, J.Y. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nature communications, 2018; 9(1), 545. Doi: https://doi.org/10.1038/s41467-018-02951-4

Warren, J.L., & MacIver, N.J. Regulation of adaptive immune cells by sirtuins. Frontiers in endocrinology, 2019; 10,466. Doi: https://doi.org/10.3389/fendo.2019.00466

Wei, T., Huang, G., Gao, J., Huang, C., Sun, M., Wu, J., ... & Shen, W. (2017). Sirtuin 3 deficiency accelerates hypertensive cardiac remodeling by impairing angiogenesis. Journal of the American Heart Association, 2019; 6(8), e006114. Doi: https://doi.org/10.1161/JAHA.117.006114

Yu, J., Qin, B., Wu, F., Qin, S., Nowsheen, S., Shan, S., ... & Wang, L. Regulation of serine-threonine kinase Akt activation by NAD+-dependent deacetylase SIRT7. Cell reports, 2017; 18(5), 1229-1240. Doi: 10.1016/j.celrep.2017.01.009

Publicado

2020-06-16

Edição

Seção

Revisiones de literatura

Como Citar

1.
Huarachi Olivera RE, Lazarte Rivera A. Doença de coronavírus (COVID-19) e sirtuínas. Rev Fac Cien Med Univ Nac Cordoba [Internet]. 16º de junho de 2020 [citado 23º de novembro de 2024];77(2):117-25. Disponível em: https://revistas.unc.edu.ar/index.php/med/article/view/28196

Artigos Semelhantes

111-120 de 2040

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)