Reproductive biology of Chuquiraga avellanedae (Asteraceae), an endemic shrub of Patagonia

Authors

  • Facundo T. Zaffaroni Universidad Nacional de la Patagonia San Juan Bosco
  • M. Victoria Campanella Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina.
  • Fernando J. Martínez Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco UNPSJB, Puerto Madryn, Chubut, Argentina. y Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina

DOI:

https://doi.org/10.31055/1851.2372.v56.n4.33707

Keywords:

Ambophily, breeding system, Chuquiraga avellanedae, seed set, manual pollination, pollinating insects

Abstract

Background and aims: Chuquiraga avellanedae (Asteraceae) is an endemic species of the Patagonian steppes and a key component of the ecosystem. Knowing the reproductive system and the dependence on pollinating agents is important for understanding gene flow and seed production. The objectives were to determine whether this species is self-incompatible and ambophilous.

M&M: A field experiment was carried out and the following treatments were applied: cross-pollination, self-pollination, wind pollination, spontaneous pollination and control. In addition, observations were made on pollinator insects during two seasons.

Results: Seed production was significantly higher in the cross-pollination treatment and the control, differing from self-pollination and wind pollination. There was no seed production in the spontaneous pollination treatment. Flowers were frequently visited by insects mainly belonging to Hymenoptera and Diptera. There was inter-annual variation in the abundance of the major pollinator taxa. There was variation in the structure of the pollinator assemblage between years.

Conclusions: Chuquiraga avellanedae is considered a self-incompatible species and a generalist-pollinated plant visited by many pollinators. This work reveals that pollinator insects are crucial for the reproductive success of this shrub. Moreover, C. avellanedae is an important source of resources for a high number of insects that visit its flowers. In agreement with previous knowledge, these findings indicate that the interaction C. avellanedae-insects represents a relevant component for ecosystem processes and services at regional scale.

Downloads

Download data is not yet available.

References

ABRAHAMCZYK, S., C. PORETSCHKIN & S. S. RENNER. 2017. Evolutionary flexibility in five hummingbird/plant mutualistic systems: testing temporal and geographic matching. J Biogeogr. 44: 1847-1855.

AIZEN, M. A. & D. P. VÁZQUEZ. 2006. Flower performance in human-altered habitats. In: HARDER, L. D. & S. C. BARRETT (eds.), Ecology and evolution of flowers, pp.159-179. Oxford University Press.

BALVANERA, P., C. KREMEN & M. MARTÍNEZ-RAMOS. 2005. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Applic. 15: 360-375. https://doi.org/10.1890/03-5192.

BALVANERA, P., A. B. PFISTERER, N. BUCHMANN, J. S. HE, T. NAKASHIZUKA, D. RAFFAELLI & B. SCHMID. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Letters 9: 1146-1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x.

BARRETT, S. C. 2003. Mating strategies in flowering plants: the outcrossing–selfing paradigm and beyond. Philos. Trans., Ser. B. 358: 991-1004. https://dx.doi.org/10.1098%2Frstb.2003.1301.

BATES, D., M. MÄCHLER, B. BOLKER & S. WALKER. 2015. Fitting linear mixed efects models using lme4. J. Stat Softw. 67: 1–47. https://doi.org/10.18637/jss.v067.i01.

BISIGATO, A. J., L. A. HARDTKE, H. F. DEL VALLE, P. J. BOUZA & R. G. PALACIO. 2016. Regional-scale vegetation heterogeneity in northeastern Patagonia: Environmental and spatial components. Community Ecol. 17: 8-16. https://doi.org/10.1556/168.2016.17.1.2.

CAMPANELLA, M. V. & M. B. BERTILLER. 2008. Plant phenology, leaf traits and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. J. Veg. Sci. 19: 75-85. https://doi.org/10.3170/2007-8-18333.

CASALINI, A. I. 2016. Heterogeneidad de la vegetación en el ecotono entre las provincias fitogeográficas del monte y patagónica. Descripción y factores asociados. Tesis doctoral. Universidad Nacional del sur, Bahía Blanca, Buenos Aires, Argentina.

CHACOFF, N. P., J. RESASCO & D. P. VÁZQUEZ. 2018. Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. Bull. Ecol. Soc. Amer. 99: 21-28. https://doi.org/10.1002/ecy.2063.

CORREA, M. N. 1971. Flora Patagónica. Ed. Colección Científica. Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.

CULLEY, T. M., S. G. WELLER & A. K. SAKAI. 2002. The evolution of wind pollination in angiosperms. Trends Ecol. Evol. 17: 361-369. https://doi.org/10.1016/S0169-5347%2802%2902540-5.

DEBANDI, G., B. ROSSI, J. ARANÍBAR, J. A. AMBROSETTI & I. E. PERALTA. 2002. Breeding system of Bulnesia retama (Gillies ex Hook &Arn.) Gris. (Zygophyllaceae) in the Central Monte Desert (Mendoza, Argentina). J. Arid Environm. 51: 141-152. https://doi.org/10.1006/jare.2001.0924.

DELLAPE, P. M.&G. H. CHELI. 2007. A new species of Anomaloptera Amyot & Serville from Patagonia (Hemiptera: Lygaeoidea: Oxycarenidae). Zootaxa. 1528: 65-68. https://doi.org/10.11646/zootaxa.1528.1.4.

EZCURRA, C. 1985. Revisión del género Chuquiraga (Compositae—Mutisieae). Darwiniana. 219-284.

EZCURRA, C. 2002. Phylogeny, Morphology, and Biogeography of Chuquiraga, an Andean-Patagonian Genus of Asteraceae-Barnadesioideae. Bot Rev. 68: 153-170.

FORCONE, A. 2004. Hierbas y arbustos frecuentes en el valle inferior del Río Chubut. Ed. UNS, Chubut, Argentina.

FORCONE, A. 2008. Pollen analysis of honey from Chubut (Argentinean Patagonia). Grana 47: 147-158. https://doi.org/10.1080/10652460802106340.

FEIJÓO, M. S. 2006. Caracteres morfo anatómicos foliares comparados en tres especies Patagónicas del género Chuquiraga Juss. (Asteraceae). Naturalia Patagonica. 3: 11-28.

FENSTER, C. B., W. S. ARMBRUSTER, P. WILSON, M. R. DUDASH & J. D. THOMSON. 2004. Pollination syndromes and floral specialization. Annual Rev. Ecol. Evol. Syst. 35: 375-403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347.

HALL, P., S. WALKER & K. BAWA. 1996. Effect of forest fragmentation on genetic diversity and mating system in a tropical tree, Pithecellobium elegans. Conservation Biol. 10: 757-768. https://doi.org/10.1046/j.1523-1739.1996.10030757.x.

HARTIG, F. 2020. DHARMa: residual diagnostics for hierarchical (multilevel/mixed) regression models. R package version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa.

HOTHORN, T., F. BRETZ & P. WESTFALL. 2008. Simultaneous inference in general parametric models. Biometr. J. 50: 346-363. https://doi.org/10.1002/bimj.200810425.

KEARNS, C. A. & D. W. INOUYE. 1993. Techniques for pollination biologists. University press of Colorado.

KEARNS, C. A. & D. W. INOUYE. 1997. Pollinators, flowering plants, and conservation biology. Bioscience. 47: 297-307. https://doi.org/10.2307/1313191.

KRÖPFL, A. I., N. M. VILLASUSO & G. PETER. 2012. Guía para el reconocimiento de especies de los pastizales del Monte Oriental de Patagonia. Ed. INTA, Bariloche, Argentina.

MARTÍNEZ, F. J., P. M. DELLAPÉ, A. J. BISIGATO & G. H. CHELI. 2021. Native shrubs and their importance for arthropod diversity in the southern Monte, Patagonia, Argentina. J. Insect Conserv. 25: 27-38. http://dx.doi.org/10.1007/s10841-020-00283-7.

MEDAN, D. & M. DEVOTO. 2017. Ambophily, not entomophily: the reproduction of the perennial Discaria chacaye (Rhamnaceae: Colletieae) along a rainfall gradient in Patagonia, Argentina. Pl. Syst. Evol .303: 841-851. https://doi.org/10.1007/s00606-017-1417-8.

MORRIS, W. F. 2003. Which mutualisms are most essential? Buffering of plant reproduction against the extinction of pollinators. In: T. MCPHEARSON P & P.J. MORIN, The importance of species: perspectives on expendability and triage. Integr. Comp. Biol. 43(4): 260-280. https://doi: 10.1093/icb/43.4.603.

MUÑOZ, A. A. & M. T. ARROYO. 2004. Negative impacts of a vertebrate predator on insect pollinator visitation and seed output in Chuquiraga oppositifolia, a high Andean shrub. Oecologia. 138: 66-73. https://doi.org/10.1007/s00442-003-1405-2.

MUÑOZ, A. A. & M. T. ARROYO. 2006. Pollen limitation and spatial variation of reproductive success in the insect-pollinated shrub Chuquiraga oppositifolia (Asteraceae) in the Chilean Andes. Arctic Antarc. Alpine Res. 38: 608-613. https://doi.org/10.1657/1523-0430(2006)38[608:PLASVO]2.0.CO;2.

NIEVES-ALDREY, J. L., F. FONTAL-CAZALLA & F. FERNÁNDEZ. 2006. Introducción a los Hymenoptera de la Región Neotropical. Universidad Nacional de Colombia.

PALACIO R. G., A. J. BISIGATO & P. J. BOUZA. 2014. Soil erosion in three grazed plant communities in northeastern Patagonia. Land Degrad. Dev. 25: 594–603. https://doi.org/10.1002/ldr.2289.

PARUELO, J. M., E. G. JOBBÁGY & O. E. SALA. 1998. Biozones of patagonia (Argentina). Ecol. Austral. 8: 145-153.

POISOT, T., D. B. STOUFFER & D. GRAVEL. 2015. Beyond species: why ecological interaction networks vary through space and time. Oikos. 124: 243-251. https://doi.org/10.1111/oik.01719.

PYRCZ, T., A. UGARTE, P. BOYER, A. M. SHAPIRO & D. BENYAMINI. 2016. An updated list of the butterflies of Chile (Lepidoptera, Papilionoidea and Hesperioidea) including distribution, flight period and conservation status: part II, Subfamily Satyrinae (Nymphalidae), with the descriptions of new taxa. Bol. Mus. Nac. Hist. Nat. Santiago de Chile. 65.

R DEVELOPMENT CORE TEAM. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en: https://www.R-project.org/.

RECH, A. R., B. DALSGAARD, B. SANDEL, J. SONNE, J. C. SVENNING, N. HOLMES & J. OLLERTON. 2016. The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability. Plant Ecol. Divers. 9: 253-262. https://doi.org/10.1080/17550874.2016.1207722.

TADEY, M. 2007. Efectos del pastoreo sobre la polinización y producción de semillas en el Monte del NO Patagónico. Tesis Doctoral, CRUB-UN del Comahue, Bariloche, Río Negro, Argentina.

TADEY, M., J. C. TADEY & N. TADEY. 2009. Reproductive biology of five native plant species from the Monte Desert of Argentina. Bot. J. Linn. Soc. 161: 190-201. https://doi.org/10.1111/j.1095-8339.2009.01001.x.

TADEY, M. 2011. Reproductive biology of Monttea aphylla (Scrophulariaceae). Austral. J. Bot. 59: 713-718. http://dx.doi.org/10.1071/BT10282.

TAPPARACI, O. F. & C. C. GONZÁLEZ. 2009. Guía escolar para la identificación de animales y plantas comunes del noreste del Chubut. Ed. Fondo para las Américas-Asociación Ecológica de la Patagonia.

TORRES, C. & L. GALETTO. 2008. Importancia de los polinizadores en la reproducción de Asteraceae de Argentina Central. Acta Bot. Venez. 31: 473-494.

TRIPLEHORN, C. A., N. F. JOHNSON &D. J. BORROR. 2005. An introduction to the study of insects. 7th ed. Australia: Thomson, Brooks/Cole.

VÁZQUEZ, D. P. & D. SIMBERLOFF. 2004. Indirect effects of an introduced ungulate on pollination and plant reproduction. Ecol. Monogr. 74: 281-308. https://doi.org/10.1890/02-4055.

ZAPATA, T. R. & M. T. K. ARROYO. 1978. Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica. 10: 221-230.

ZUUR, A., E. N. IENO, N. WALKER, A. A. SAVELIEV & G. M. SMITH. 2009. Mixed effects models and extensions in ecology with R. Springer Science & Business Media.

Published

2021-11-04

How to Cite

Zaffaroni, Facundo T., M. Victoria Campanella, and Fernando J. Martínez. 2021. “Reproductive Biology of Chuquiraga Avellanedae (Asteraceae), an Endemic Shrub of Patagonia”. Boletín De La Sociedad Argentina De Botánica (Journal of the Argentine Botanical Society 56 (4). https://doi.org/10.31055/1851.2372.v56.n4.33707.

Issue

Section

Biología Reproductiva