Las ametropías: revisión actualizada para médicos no oftalmólogos

Virgilio Galvis, Alejandro Tello, Oscar Blanco, Andrea N Laiton, Marlon R Dueñas, Priscila A Hidalgo

Resumen


Los defectos de refracción se originan por un desacople entre el poder de convergencia de los lentes del ojo por un lado, es decir la córnea y el cristalino, que hacen que los rayos que llegan al ojo formen un foco y generen una imagen,  y por otro lado la retina, que es la pantalla biológica fotosensible donde esa imagen será transformada en un impulso nervioso. Estos defectos incluyen la miopía, la hipermetropía y el astigmatismo.  La presbicia se puede considerar también un defecto refractivo, pero de características especiales, pues solo afecta la visión próxima en mayores de 40 años. rocedure performed by an experimen enfocada en la mergencia de los lentes del ojo (c ification procedure performed by an experimAl alterar la calidad de la imagen enfocada en la zona mas sensible a la luz de la retina (la mácula), disminuyen la agudeza visual. Para su manejo existen desde el uso de anteojos y lentes de contacto hasta la corrección quirúrgica (cirugía refractiva). La incidencia de ciertos errores de refracción (específicamente de la  miopía) se ha incrementado en la últimas décadas, y se han identificado algunos factores ambientales relacionados con ello. Algunas medidas de manejo médico de la misma han mostrado un efecto positivo en el control de su aparición y progresión.


Palabras clave


Errores de refracción; presbiopía; miopía; hiperopía; astigmatismo

Texto completo:

PDF

Referencias


Findlen P, Bence R. The history of the eye. En: https://web.stanford.edu/class/history13/earlysciencelab/body/eyespages/eye.html; consultado el 1/10/2016.

Crombie AC. Expectation, modelling and assent in the history of optics : Part I . Alhazen and the Medieval tradition. Stud Hist Phil Sci. 1991;21:605–32.

King H. Early references to lenses and to optics. In: The history of telescope. Mineola, Estados Unidos: Dover Publications Ins.; 1955. p. 27–9.

James R. The father of British optics: Roger Bacon, c. 1214-1294. Br J Ophthalmol. 1928;12:1–14.

Handley N. The invention of spectacles En: http://www.college-optometrists.org/en/college/museyeum/online_exhibitions/spectacles/invention.cfm; consultado el 1/10/2016.

Ilardi V. The invention of Spectacles revisited. In: Renaissance Vision from Spectacles to Telescopes. Filadelfia, Estados Unidos: American Philosophical Society; 2007. p. 3–50.

Norman J. The Earliest Depiction of Eyeglasses in a Painted Work of Art (1352). En: http://www.historyofinformation.com/expanded.php?id=1755; consultado el 1/10/2016.

Goes F. Invention of Spectacles. In: The Eye in History. Nueva Deli, India: Jaypee Brothers Medical Publishers Ltd.; 2013. p. 126–33.

Handley N. Seventeenth century spectacles. En: http://www.college-optometrists.org/en/college/museyeum/online_exhibitions/spectacles/seventeen.cfm; consultado el 1/10/2016.

Fleishman DA. Eyeglasses Through the Ages. En: http://www.antiquespectacles.com/history/ages/through_the_ages.htm; consultado el 1/10/2016.

Handley N. A bit on the side - The development of spectacle sides. En: http://www.college-optometrists.org/en/college/museyeum/online_exhibitions/spectacles/side.cfm; consultado el 1/10/2016.

Handley N. The “inventor” of bifocals? En: http://www.college-optometrists.org/en/college/museyeum/online_exhibitions/artgallery/bifocals.cfm; consultado el 2/10/2016.

Young T. On the mechanism of the eye. Philos Trans R Soc London. 1801;91:23–88.

Sánchez Ferreiro A, Muñoz Bellido L. Evolución histórica de las lentes de contacto. Arch Soc Esp Oftalmol. 2012;87:265–6.

Boswall G, Ehlers W, Luistro A, Worrall M, DonshikPC. A comparison of conventional and disposable extended wear contact lenses. CLAO J. 1993;19:158–65.

Poggio E, Abelson M. Complications and symptoms in disposable extended wear lenses compared with conventional soft daily wear and soft extended wear lenses. CLAO J. 1993;19:31–9.

Schein O, Glynn R, Poggio E, Seddon J, Kenyon K. The relative risk of ulcerative keratitis among users of daily wear and extended-wear soft contact lenses: a case control study. N Engl J Med. 1989;321:773–8.

Poggio E, Glynn R, Schein O. The incidence of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. N Engl J Med. 1989;321:779–83.

Morgan P, Efron N, Hill E, Raynor M, Whiting M, Tullo A. Incidence of keratitis of varying severity among contact lens wearers. Br J Ophthalmol. 2005;89:430–6.

Barr J. History and development of contact lenses. In: Bennett E, Weissman B, editors. Clinical contact lens practice. Segunda ed. Filadelfia, Estados Unidos: JB Lippincott Co; 2005. p. 1–10.

Katz M, Kruger P. The Human Eye as an Optical System. In: Tasman W, Jaeger EA, editors. Duane ́s Ophthalmology. Filadelfia, Estados Unidos: Lippincott Williams & Wilkins; 2013.

Galvis V, Tello A, Carreño N. El cristalino para el médico general. Med UNAB. 2008;11:225–30.

Barcsay G, Nagy Z, Németh J. Distribution of axial, corneal, and combined ametropia in a refractive surgery unit. Eur J Ophthalmol. 2003;13:739–44.

Saw SM, Gazzard G, Shin-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25:381–91.

Chua SYL, Ikram MK, Tan CS, Lee YS, Ni Y, Shirong C, et al. Relative Contribution of Risk Factors for Early-Onset Myopia in Young Asian Children. Investig Opthalmology Vis Sci [Internet]. 2015;56:8101. Available from: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.15-16577.

Peet JA, Cotch MF, Wojciechowski R, Bailey-Wilson JE, Stambolian D. Heritability and familial aggregation of refractive error in the Old Order Amish. Investig Ophthalmol Vis Sci. 2007;48:4002–6.

Tkatchenko A V., Tkatchenko T V., Guggenheim JA, Verhoeven VJM, Hysi PG, Wojciechowski R, et al. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genet. 2015;11:1–25.

Ramamurthy D, Lin Chua S, Saw S. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin Exp Optom. 2015;98:497-506.

French A, Ashby R, Morgan I, Rose K. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114:68.

Morgan IG, Ohno -Matsui K SS. Myopia. Lancet. 2012;379:1739–48.

Lougheed T. Myopia: the evidence for environmental factors. Env Heal Perspect. 2014;122:A12-9.

Wu P-C, Tsai C-L, Hu C-H, Yang Y-H. Effects of outdoor activities on myopia among rural school children in Taiwan. Ophthalmic Epidemiol. 2010;17:338-42.

Lin LLK, Shih YF, Hsiao CK, Chen CJ. Prevalence of Myopia in Taiwanese Schoolchildren: 1983 to 2000. Ann Acad Med Singapore. 2004;33:27–33.

Jung SK, Lee JH, Kakizaki H, Jee D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Investig Ophthalmol Vis Sci. 2012;53:5579–83.

Sun J, Zhou J, Zhao P, Lian J, Zhu H, Zhou Y, et al. High prevalence of myopia and high myopia in 5060 Chinese University students in Shanghai. Investig Ophthalmol Vis Sci. 2012;53:7504–9.

Huang H, Chang D, Wu P. The Association between Near Work Activities and Myopia in Children-A Systematic Review and Meta-Analysis. PLoS One. 2015;10:e0140419.

Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Investig Ophthalmol Vis Sci. 2007;48:3524–32.

Morgan IG. What Public Policies Should Be Developed to. Optom Vis Sci. 2016;93:1058–60.

Saunders KJ. Early refractive development in humans. Surv Ophthalmol. 1995;40:207–16.

Parssinen O, Kauppinen M, Viljanen A. The progression of myopia from its onset at age 8 – 12 to adulthood and the influence of heredity and external factors on myopic progression . A 23-year follow-up study. Acta Ophthalmol. 2014;92:730–9.

Topuz H, Ozdemir M, Cinal A, Gumusalan Y. Age-related differences in normal corneal topography. Ophthalmic Surg Lasers Imaging. 2004;35:298–303.

The Eye Disease Case-Control Study Group . Risk factors for idiopathic rhegmatogenous retinal detachment. Am J Epidemiol. 1993;137:749–57.

Lowe R. Causes of shallow anterior chamber in primary angle-closure glaucoma. Am J Ophthalmol. 1969;67:87–93.

Tailor V, Bossi M, Greenwood J, Dahlmann-Noor A. Childhood amblyopia: current management and new trends. Br Med Bull. 2016;119:75–86.

Adler D, Millodot M. The possible effect of undercorrection on myopic progression in children. Clin Exp Optom. 2006;89:315–21.

Vasudevan B, Esposito C, Peterson C, Coronado C, Ciuffreda KJ. Under-correction of human myopia - Is it myopigenic?: A retrospective analysis of clinical refraction data. J Optom. Spanish General Council of Optometry; 2014;7:147–52.

Galvis V, Tello A, Blanco O, Parra MM. Refractive correction and myopia progression. Graefe’s Arch Clin Exp Ophthalmol. 2016;254:407–8.

Koffler BH, Sears JJ. Myopia control in children through refractive therapy gas permeable contact lenses: Is it for real? Am J Ophthalmol. 2013;156:1076–1081.e1.

Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53:3913–9.

Chia A, Lu Q, Tan D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia Control with Atropine 0.01% Eyedrops. Ophthalmology. 2016;123:391–9.

Galvis V, Tello A, Parra MM, Rodriguez CJ, Blanco O. Re: Chia et al.: Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops (Ophthalmology 2016;123:391-9). Ophthalmology. 2016;123:e40–1.

Galvis V, Tello A, Rodriguez CJ, Rey JJ. Atropine dose to treat myopia. Ophthalmology. 2012;119:1718.

Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115:1279–85.

Wu PC, Tsai CL, Wu HL, Yang YH, Kuo HK. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120:1080–5.

Galvis V, Tello A, Castellanos Y, Camacho P, Prada A, Rangel C. Re: Wu et al.: Outdoor activity during class recess reduces myopia onset and progression in school children (Ophthalmology 2013;120:1080-1085). Ophthalmology. 2014;121:e20.

Hua WJ, Jin JX, Wu XY, Yang JW, Jiang X, Gao GP, et al. Elevated light levels in schools have a protective effect on myopia. Ophthalmic Physiol Opt. 2015;35:252–62.

Hobday R. Myopia and daylight in schools: a neglected aspect of public health? Perspect Public Health. 2016;136:50-5.

Li S, Li S, Kang M, Zhou Y, Liu L, Li H, et al. Near Work Related Parameters and Myopia in Chinese Children: the Anyang Childhood Eye Study. PLoS One. 2015;10:e0134514.

Sandoval HP, Donnenfeld ED, Kohnen T, Lindstrom RL, Potvin R, Tremblay DM, et al. Modern laser in situ keratomileusis outcomes. J Cataract Refract Surg. 2016;42:1224–34.

Alió JL, Toffaha BT. Refractive Surgery With Phakic Intraocular Lenses: An Update. Int Ophthalmol Clin. 2013;53:91–110.

Emarah A, El-Helw M, Yassin H. Comparison of clear lens extraction and collamer lens implantation in high myopia. Clin Ophthalmol. 2010;14:447–54.


Enlaces refback

  • No hay ningún enlace refback.


Revista de la Facultad de Ciencias Médicas.
Pabellón Perú - Ciudad Universitaria
Facultad de Ciencias Médicas. Universidad Nacional de Córdoba
Argentina