Microhongos termofílicos y termotolerantes de las escombreras de las minas de carbón más allá del Círculo Ártico
DOI:
https://doi.org/10.31055/1851.2372.v59.n4.44478Palabras clave:
Ártico, microhongos, mina de carbón, termófilo, termotolerante, vertedero de carbónResumen
Introducción y objetivos: Los hongos termófilos y termotolerantes ocupan una variedad de nichos ecológicos. El objetivo de este artículo es mostrar que estos hongos microscópicos son capaces de vivir incluso en las duras condiciones del alto Ártico más allá del Círculo Polar Ártico.
M&M: Se recogieron y estudiaron rocas de los restos de las minas de carbón mediante microscopía electrónica de barrido. Se empleó el método de inoculación directa para aislar microhongos. Los aislamientos fueron caracterizados mediante identificación morfológica y métodos moleculares. La tasa de crecimiento de los micromicetos se estudió en función de la temperatura.
Resultados: Se lograron ocho cultivos de hongos microscópicos pertenecientes a seis especies que pueden crecer a temperaturas de 45 °C y superiores de los escombros de las minas de carbón.
Conclusiones: Los datos obtenidos indican la presencia de hongos microscópicos termófilos y termotolerantes en los vertederos de minas de carbón más allá del Círculo Polar Ártico. Todos los hongos pertenecían al orden Eurotiales. Estos hongos microscópicos pueden existir en las condiciones más duras con varios factores adversos simultáneos.
Referencias
BILAJ, T. I. 1985. Termofil'nye griby i ikh fermentativnye svojstva. Nauk. dumka, Kiev. (In Russ.).
BRAGINA, P. S. 2013. Spontaneous combustion of coal dumps in Kemerovo region. Vestnik Kuzbasskoj Gosudarstvennoj Pedagogicheskoj Akademii 4: 57-64. (In Russ.).
COONEY, D. G. & R. EMERSON. 1964. Thermophilic Fungi: An Account of Their Biology, Activities, and Classification. W.H. Freeman and Co, San Francisco.
DETHERIDGE, A. P., D. COMONT, T. M. CALLAGHAN, J. BUSSELL … & G.W. GRIFFITH. 2018. Vegetation and edaphic factors influence rapid establishment of distinct fungal communities on former coal-spoil sites. Fungal Ecol. 33: 92-103. https://doi.org/10.1016/j.funeco.2018.02.002
DOMSCH, K. H., W. GAMS & T. H. ANDERSON. 2007. Compendium of soil fungi, 2nd taxonomically revised edition by W. Gams. IHW, Eching.
DUDKA, I. A., S. P. VASSER & I. A. EHLLANSKAYA. 1982. Metody ehksperimental'noj mikologii: Spravochnik. Nauk. dumka, Kiev. (In Russ.).
EGOROVA, L. N. 1986. Pochvennye griby dal'nego vostoka. Nauka, Leningrad. (In Russ.).
EVANS, H. C. 1971. Thermophilous fungi of coal spoil tips. II Occurrence, distribution and temperature relationships. Trans. Brit. Mycol. Soc. 57: 255-266.
FROHLICH-NOWOISKY, J., D. A. PICKERSGILL, V. R. DESPRES & U. POSCHL. 2009. High diversity of fungi in air particulate matter. Proc. Natl. Acad. Sci. USA 106: 12814-12819. https://doi.org/10.1073/pnas.0811003106
GODINHO, V. M., L. E. FURBINO, I. F. SANTIAGO, F. M. PELLIZZARI … & L. H. ROSA. 2013. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J. 7: 1434-1451. https://doi.org/10.1038/ismej.2013.77
HOUBRAKEN, J. & R. A. SAMSON. 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud. Mycol. 70: 1-51. https://doi.org/10.3114/sim.2011.70.01
HOUBRAKEN, J., H. SPIERENBURG & J. C. FRISVAD. 2012. Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie van Leeuwenhoek 101: 403-421. https://doi.org/10.1007/s10482-011-9647-1
HOUBRAKEN, J., S. KOCSUBÉ, C. M. VISAGIE, N. YILMAZ … & J. C. FRISVAD. 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 95: 5-169. https://doi.org/10.1016/j.simyco.2020.05.002
HUBKA, V., S. W. PETERSON, J. C. FRISVAD, T. YAGUCHI… & M. KOLARÝK. 2013. Aspergillus waksmanii sp. nov. and Aspergillus marvanovae sp. nov., two closely related species in section Fumigati. Int. J. Syst. Evol. Microbiol. 63: 783-789. https://doi.org/10.1099/ijs.0.047076-0
ILIUSHIN, V. A. 2020. First find of Cadophora antarctica Rodr.-Andrade, Stchigel, Mac Cormack & Cano in the Arctic. Czech Polar Reports 10: 147-152. https://doi.org/10.5817/CPR2020-2-11
ILIUSHIN, V. A. & I. Y. KIRTSIDELI. 2021. Dynamics of complexes of microfungi in the process of overgrowing spoil tips of coal mines in the southern tundra zone (Komi Republic). Mikol. Fitopatol. 55: 129-137. http://dx.doi.org/10.31857/S0026364821020045
ILIUSHIN, V. A., I. Y. KIRTSIDELI & D. Y. VLASOV. 2022a. Diversity of culturable microfungi of coal mine spoil tips in Svalbard. Polar Sci. 32: 100793. https://doi.org/10.1016/j.polar.2022.100793
ILIUSHIN, V. A., I. Y. KIRTSIDELI & N. A. SAZANOVA. 2022b. Diversity of microfungi of coal mine spoil tips in the Magadan Region, Russia. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 12: 136-146. https://creamjournal.org/pdf/CREAM_12_1_11.pdf
ILIUSHIN, V. A. 2022. Aspergillus sibiricus (Aspergillaceae, Eurotiales), a novel acid-tolerant species in Aspergillus section Fumigati. Phytotaxa 531: 63-72. https://doi.org/10.11646/phytotaxa.531.1.5
JOHRI, B. N. & R. P. THAKRE. 1975. Soil amendments and enrichment media in the ecology of thermophilic fungi. Proc. Indian Natl. Sci. Acad. 41: 564-570.
KASHKIN, P. N., M. K. KHOKHRYAKOV & A. P. KASHKIN. 1979. Opredelitel' patogennykh, toksigennykh i vrednykh dlya cheloveka gribov. Medicina. Leningr. otd-nie, Leningrad. (In Russ.).
KHABIBULLINA, F. M., E. G. KUZNETSOVA & A. N. PANYUKOV. 2015. Transformation of vegetation, soils, and soil microbiota in the impact zone of the coal mine «Vorkutinskaya». Theoretical and Applied Ecology 4: 30-37. (In Russ.).
KIRTSIDELI, I. Y., Y. K. NOVOZHILOV & E. V. BOGOMOLOVA. 2011. Microfungi complexes in soils developed on basic and ultramafic rocks of polar Ural. Mikol. Fitopatol. 45: 513-521. (In Russ.).
KIRTSIDELI I. Y., D. Y. VLASOV, M. S. ZELENSKAYA, V. A. ILIUSHIN … & E. P. BARANTSEVICH. 2020. Assessment of anthropogenic invasion of microfungi in Arctic ecosystems, (exemplified by Spitsbergen archipelago). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal) 99: 145-151. (In Russ.).
KORNIŁŁOWICZ-KOWALSKA, T. & I. KITOWSKI. 2013. Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds. Mycopathologia 175: 43-56. https://doi.org/10.1007/s11046-012-9582-3
KOZAKIEWICZ, Z. & D. SMITH. 1994. Physiology of Aspergillus. In: SMITH, J. E. (ed.), Aspergillus, Biotechnology handbooks 7, pp. 23-40. Plenum Press, New York.
LEWIŃSKA, P. & A. DYCZKO. 2016. Thermal digital terrain model of a coal spoil tip - A way of improving monitoring and early diagnostics of potential spontaneous combustion areas. Journal of Ecological Engineering 17: 170-179. https://doi.org/10.12911/22998993/64605
LIESKE, R. & E. HOFMANN. 1928. Untersuchungen über die Mikrobiologie der Kohlen und ihrer natürlichen Lagerstätten. Die Mikroflora der Steinkohlengruben 9: 282-285. (In Germ.).
MANAKOV, J. A. & A. N. KUPRIYANOV. 2009. Criteria for diagnostics of primary succession stages on the rockdumps of Kuzbass. Gorny`j informacionno-analiticheskij byulleten` S7: 186-193. (In Russ.).
MOUCHACCA, J. 2000. Thermophilic fungi and applied research: A synopsis of name changes and synonymies. World J. Microbiol. Biotechnol. 16: 881-888. https://doi.org/10.1023/A:1008970306466
NENAKHOVA, V. F. 1986. Gorelye porody. In: KOZLOVSKIJ, E. A. (ed.), Gornaya ehnciklopediya. Tom 2, p. 85. Sovetskaya ehnciklopediya, Moscow. (In Russ.).
O’DONNELL, K. 1993. Fusarium and its near relatives. In: REYNOLDS, D. R. & J. W. TAYLOR (eds), The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics, pp. 225-233. CABI Publishing, Wallingford.
PAN, W. Z., X. W. HUANG, K. B. WEI, C. M. ZHANG … & K. Q. ZHANG. 2010. Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses. J. Microbiol. 48: 146-52. https://doi.org/10.1007/s12275-010-9157-2
QUEROL, X., M. IZQUIERDO, E. MONFORT, E. ALVAREZ … & Y. WANG. 2008. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int. J. Coal Geol. 75: 93-104. https://doi.org/10.1016/j.coal.2008.04.003
RAPER, K. B. & C. THOM. 1949. A manual of the Penicillia. The Williams & Wilkins Company, Baltimore.
SACRAMENTO, I. F., C. E. G. R. SCHAEFER, R. G. SIQUEIRA, G. R. CORRÊA … & M. R. FRANCELINO. 2023. Ornithogenesis and soil-landscape interplays at northern Harmony Point, Nelson Island, Maritime Antarctica. An. Acad. Bras. Cienc. 95: e20230722.
https://doi.org/10.1590/0001-3765202320230722
SALAR, R. 2018. Thermophilic Fungi: Basic Concepts and Biotechnological Applications. CRC Press, Boca Raton.
SALUJA, P. & G. S. PRASAD. 2007. Debaryomyces singareniensis sp. nov., a novel yeast species isolated from a coalmine soil in India. FEMS Yeast Res. 7: 482-488. https://doi.org/10.1111/j.1567-1364.2006.00182.x
SALUJA, P., R. K. YELCHURI, S. K. SOHAL, G. BHAGAT … & G. S. PRASAD. 2012. Torulaspora indica a novel yeast species isolated from coal mine soils. Antonie Van Leeuwenhoek 101: 733-42. https://doi.org/10.1007/s10482-011-9687-6
SAMSON, R. A., J. HOUBRAKEN, U. THRANE, J. C. FRISVAD & B. ANDERSEN. 2010. Food and indoor fungi. CBS KNAW Biodiversity Center, Utrecht.
SKLENÁŘ, F., Ž. JURJEVIĆ, P. ZALAR, J. C. FRISVAD … & V. HUBKA. 2017. Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Stud. Mycol. 88: 161-236. https://doi.org/10.1016/j.simyco.2017.09.002
STERFLINGER, K., D. TESEI & K. ZAKHAROVA. 2012. Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecology 5: 453-462. https://doi.org/10.1016/j.funeco.2011.12.007
STOLK, A. C. 1965. Thermophilic species of Talaromyces Benjamin and Thermoascus Miehe. Antonie van Leeuwenhoek 31: 262-276.
TANSEY, M. R. & T. D. BROOK. 1978. Microbial life at high temperatures: ecological aspects. In: KUSHNER, D. J. (ed.), Microbial life in extreme environments, pp. 159-216. Acad. Press, London.
THAKRE, R. P. & B. N. JOHRI. 1976. Occurrence of thermophilic fungi in coal mine soils of Madhya Pardesh. Current Science 45: 271-273.
ULFIG, K. & M. KORCZ. 1995. Isolation of keratinolytic fungi from a coal mine dump. Mycopathologia 129: 83-86.
WHITE, T. J., T. BRUNS, S. LEE & J. TAYLOR. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: INNIS, M. A., D. H. GELFAND, J. J. SNINSKY & T. J. WHITE (eds.), PCR protocols: a guide to methods and applications, pp. 315-322. Academic Press, London.
ZAK, J. C. & H. G. WILDMAN. 2004. Fungi in stressful environments. In: MUELLER, G. M., G. F. BILLS & M. S. FOSTER (eds.), Biodiversity of fungi, inventory and monitoring methods, pp. 303-331. Elsevier Academic Press, Amsterdam.
ZHU, R., D. MA, W. DING, B. BAI … & J. SUN. 2011. Occurrence of matrix-bound phosphine in polar ornithogenic tundra ecosystems: effects of alkaline phosphatase activity and environmental variables. Sci. Total Environ. 409: 3789-800. https://doi.org/10.1016/j.scitotenv.2011.06.034
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Vadim Iliushin, Irina Y. Kirtsideli
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El Bol. Soc. Argent. Bot.:
- Provee ACCESO ABIERTO y gratuito inmediato a su contenido bajo el principio de que hacer disponible gratuitamente la investigación al público, lo cual fomenta un mayor intercambio de conocimiento global.
- Permite a los autores mantener sus derechos de autor sin restricciones.
- El material publicado en Bol. Soc. Argent. Bot. se distribuye bajo una licencia de Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.