Stable isotope studies on current home gardens of the Quebrada de Humahuaca (Jujuy, Argentina). Their potential contribution to Argentine Northwest paleodietary studies

Authors

  • Violeta A. Killian Galván Instituto de Geocronología y Geología Isotópica
  • Gloria Sanmartino Universidad de Buenos Aires. Facultad de Medicina. Escuela de Nutrición
  • Verónica Castellano Universidad de Buenos Aires. Facultad de Filosofía y Letras
  • Verónica Seldes Facultad de Filosofía y Letras. Instituto de Ciencias Antropológicas, sección Antropología Biológica
  • Liliana G. Marban Instituto de Geocronología y Geología Isotópica

DOI:

https://doi.org/10.31048/1852.4826.v8.n2.9167

Keywords:

isotopic ecology, family farms, fertilizer, irrigation, paleodiet

Abstract

We present a methodological proposal for the construction of a frame of reference in paleodietary research through the analysis of Carbon and Nitrogen stable isotopes (?13C y ?15N) in archaeology. In particular, we focus on the effect of certain harvest practices in the isotopic values of plants from family farms (the species chosen being Zea mays, Solanum tuberosum, Amaranthus caudatus, Chenopodium quinoa and Opuntia ficus-indica, this last as a wild plant from the area). The methodology consist in: collection of information among local producers, soil characterization in terms of their chemical properties (Ph, electrical conductivity, organic carbon and nitrate) and analysis of isotopic values from plants. Considering the results, we can state that at least in semi-arid environments, such as Quebrada de Humahuaca, nutrient availability in soils impact in Zea mays ?15N values. While there is not a linear relationship between the proposed variables and the isotopic result obtained, a wider range of values was found when soil quality was lower.

Downloads

Download data is not yet available.

Author Biography

  • Verónica Seldes, Facultad de Filosofía y Letras. Instituto de Ciencias Antropológicas, sección Antropología Biológica

    Consejo Nacional de Investigaciones Científicas y Técnicas.

References

Ambrose, S. H. 1993. Isotopic analysis of paleodiets: Methodological and interpretive considerations. En: M. K. Sandford (ed.), Investigations of ancient human tissue. Chemical analysis in anthropology, pp. 59-130. Pensylvania, Gordon and Breach Science Publishers.

Amundson, R., A.T. Austin, E.A.G. Schuur, K. Yoo, V. Matzek, C. Kendall, A. Uebersax, D. Brenner and W.T. Baisden 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global biogeochemical cycles, 17(1): 1031

Araus J.L., A. Febrero, R. Buxó, M.D. Camalich, D. Martin, F. Molina, M.O. Rodriguez-Ariza y I. Romagosa. 1997. Changes in carbon isotope discrimination in grain cereals from different regions of the western Mediterranean Basin during the past seven millennia. Palaeoenvironmental evidence of a differential change in aridity during the late Holocene. Global Change Biology 3, 2: 107–118.

Bateman, A. S. y S. D. Nelly. 2007. Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies, 43(3), 237-247.

Bogaard, A., T. H. E. Heaton, P. Poulton y I. Merbach. 2007. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science, 34, 3: 335-343.

Choi, W., S. Lee, H. Ro, K. Kim y S.Yoo. 2002. Natural 15N abundances of maize and soil amended with urea and composted pig manure. Plant and Soil 245: 223–232.

Codron, J., D. Codron, J. Lee-Thorp, M. Sponheimer, W. J. Bond, D. de Ruiter, y G. Grant 2005. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science. 32 (12): 1757-1772.

Craig, H. 1957. “The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea”. Tellus 9 (1): 1-17.

De Niro M. J. y C. A. Hastorf. 1985. Alteration of 15N/14N and 13C/12C ratios of plant matter during the inicial stages of diagénesis: Studies utilizing archaeological specimens from Peru. Geochimica et Cosmochimica Acta, 49:97-115.

Díaz, D., S. Guerrero, S. Naumann, y G. Sammartino 2012. Alimentacion en la quebrada de Humahuaca: continuidad y discontinuidades desde el poblamiento hasta nuestros días. Un aporte desde la antropología alimentaria. En: Las manos en la masa: arqueologías, antropologías e historias de la alimentación en Suramérica, M. P. Babot, M.Marschodd, y F. Pazzarelli, Eds., pp. 163–184, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Museo de Antropología UNC, Instituto Superior de Estudios Sociales UNT, Córdoba.

Fernández, J. y H. O. Panarello 1999-2001. Isótopos del carbono en la dieta de herbívoros y carnívoros de los andes jujeños Xama 12-14: 71-85.

Gheggi, M. S. y V. I. Williams. 2013. New Data on Food Consumption in Pre-Hispanic Populations from Northwest Argentina (ca. 1000–1550 AD): The Contribution of Carbon and Nitrogen Isotopic Composition of Human Bones. Journal of Anthropology, 2013.

Hartman, G. 2011. Are elevated ?15N values in herbivores in hot and arid environments caused by diet or animal physiology? Functional Ecology, 25(1), 122-131.

Heaton, T. H. E. 1987. The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline enviroments. Oecologia 74, 2: 236-246

Killian Galván, V. A., y P. Salminci. 2014. Aportes a la ecología isotópica: información actual y sistemas de regadío arqueológicos en la microrregión de Antofagasta de la Sierra (provincia de Catamarca, Argentina). Comechingonia,18(1), 51-72.

Kriszan, M., W. Amelung, J. Schellberg, T. Gebbing y W. Kühbauch. 2009. Long-term changes of the ?15N natural abundance of plants and soil in a temperate grassland. Plant and soil, 325(1-2), 157-169.

Marbán L. y S. E. Ratto. 2005. Tecnologías en análisis de suelos. Ed. Asociación Argentina de la Ciencia del Suelo. Primera edición, 215 p. ISBN 987-21419-1-6.

Nielsen, A. E. 2001. Evolución social en Quebrada de Humahuaca (AD 700-1536). Historia Argentina Prehispánica, Tomo I. En E. Berberian y A. E. Nielsen (Ed.), pp. 171-264. Ed. Brujas, Córdoba.

Pate, F. D. 1994. Bone Chemistry and Paleodiet. Journal of Archaeological Method and Theory 1: 161-209.

Peterson, B.J. and B. Fry. 1987. "Stable Isotopes in Ecosystem Studies." Annual Review of Ecology and Systematics. Vol. 18: 253-320.

Pidwirny, M. 2006. "The Nitrogen Cycle". Fundamentals of Physical Geography, 2nd Edition. Date Viewed. http://www.physicalgeography.net/fundamentals/9s.html

Rodríguez, J. 2009. Descripción de los sistemaeconómico-productivos actualesde la Quebrada de Humahuaca. Http://www.cauqueva.org.ar.

Samla, 2004. Sistema de Apoyo Metodológico a los Laboratorios de Análisis de Suelos, Agua, Vegetales y Enmiendas Orgánicas. Primera edición, SAGPyA, Dirección de Agricultura. CD-Rom. ISBN 987-918440-8.

Schoeninger, M. J., y M. J. De Niro. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48(4), 625-639.

Suess, H. E., 1955 Radiocarbon Concentration in Modern Wood. Science, 122: 415-6.

UNESCO. 2002. Quebrada de Humahuaca. A cultural itinerary of 10.000 years. Proposal for the registration to the list of World Heritage of the UNESCO. Jujuy. Argentina.

Downloads

Published

2015-12-30

Issue

Section

Archaeology

How to Cite

Killian Galván, V. A., Sanmartino, G., Castellano, V., Seldes, V., & Marban, L. G. (2015). Stable isotope studies on current home gardens of the Quebrada de Humahuaca (Jujuy, Argentina). Their potential contribution to Argentine Northwest paleodietary studies. Revista Del Museo De Antropología, 8(2), 107-118. https://doi.org/10.31048/1852.4826.v8.n2.9167

Similar Articles

31-40 of 65

You may also start an advanced similarity search for this article.