Fones de Ouvido e Estresse: seu Impacto Na Saúde Auditiva
HTML (Espanhol)
PDF (Espanhol)

Palavras-chave

fones de ouvido
estresse
perda auditiva relacionada ao ruído
inflamação

Como Citar

Kalinec, G. M., & Kalinec, F. (2024). Fones de Ouvido e Estresse: seu Impacto Na Saúde Auditiva. Pinelatinoamericana, 4(1), 41-57. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/42963

Resumo

Nesta era de smartphones e tecnologia Bluetooth, o uso de fones de ouvido se tornou onipresente. Sua acessibilidade e portabilidade levaram a uma mudança de paradigma no consumo de música, podcasts, audiolivros e outros conteúdos de áudio. Antes meros instrumentos utilitários, tornaram-se companheiros íntimos oferecendo paisagens sonoras personalizadas diretamente nos ouvidos. No entanto, devido à proximidade dos fones de ouvido com as delicadas estruturas da orelha interna, a possibilidade de perda auditiva relacionada ao ruído tornou-se um risco à saúde auditiva. Além da possível deficiência auditiva, o uso prolongado de fones de ouvido pode induzir sobrecarga sensorial, fadiga mental e desgaste cognitivo, contribuindo para o desenvolvimento de estresse, depressão, isolamento social, dificuldades de comunicação e redução da qualidade de vida dos indivíduos. Assim, o uso de fones de ouvido é uma faca de dois gumes. Ao mesmo tempo em que oferece conveniência e entretenimento personalizado, também oferece riscos à saúde auditiva e psicológica dos indivíduos. Entender as intrincadas conexões entre o uso de fones de ouvido, estresse e saúde auditiva pode ajudar as pessoas a desfrutar de suas experiências de áudio sem comprometer seu bem-estar a longo prazo.

HTML (Espanhol)
PDF (Espanhol)

Referências

Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S. y Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. Lancet (London, England), 383(9925), 1325–1332. https://doi.org/10.1016/S0140-6736(13)61613-X

Bellinger, D. L., Millar, B. A., Perez, S., Carter, J., Wood, C., ThyagaRajan, S., Molinaro, C., Lubahn, C. y Lorton, D. (2008). Sympathetic modulation of immunity: relevance to disease. Cellular immunology, 252(1-2), 27–56. https://doi.org/10.1016/j.cellimm.2007.09.005

Bottaccioli, A. G., Bottaccioli, F. y Pinelatinoamericana (2023). Los estados psíquicos se traducen en moléculas biológicas: las consecuencias para la medicina y la psicología. Pinelatinoamericana, 3(1), 54–89. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/40624

Busillo, J. M., Azzam, K. M. y Cidlowski, J. A. (2011). Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. The Journal of biological chemistry, 286(44), 38703–38713. https://doi.org/10.1074/jbc.M111.275370

Canlon, B., Theorell, T. y Hasson, D. (2013). Associations between stress and hearing problems in humans. Hearing research, 295, 9–15. https://doi.org/10.1016/j.heares.2012.08.015

Capuron, L., Raison, C. L., Musselman, D. L., Lawson, D. H., Nemeroff, C. B. y Miller, A. H. (2003). Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. The American journal of psychiatry, 160(7), 1342–1345. https://doi.org/10.1176/appi.ajp.160.7.1342

Chrousos G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England journal of medicine, 332(20), 1351–1362. https://doi.org/10.1056/NEJM199505183322008

Cohen, S., Janicki-Deverts, D. y Miller, G. E. (2007). Psychological stress and disease. JAMA, 298(14), 1685–1687. https://doi.org/10.1001/jama.298.14.1685

Cohen, S., Janicki-Deverts, D., Doyle, W. J., Miller, G. E., Frank, E., Rabin, B. S. y Turner, R. B. (2012). Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 5995–5999. https://doi.org/10.1073/pnas.1118355109

Cólica, P. R. (2021). Conductas emocionales y estrés. Pinelatinoamericana, 1(1), 12–17. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/36036

Du Gay, P. (1997). Doing Cultural Studies: The Story of the Sony Walkman. SAGE Publications.

Elenkov I. J. (2008). Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and well-being. Neurochemistry international, 52(1-2), 40–51. https://doi.org/10.1016/j.neuint.2007.06.037

Foster, J. A., Rinaman, L. y Cryan, J. F. (2017). Stress & the gut-brain axis: Regulation by the microbiome. Neurobiology of stress, 7, 124–136. https://doi.org/10.1016/j.ynstr.2017.03.001

Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R. y Maier, S. F. (2007). Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain, behavior, and immunity, 21(1), 47–59. https://doi.org/10.1016/j.bbi.2006.03.005

Fujioka, M., Kanzaki, S., Okano, H. J., Masuda, M., Ogawa, K. y Okano, H. (2006). Proinflammatory cytokines expression in noise-induced damaged cochlea. Journal of neuroscience research, 83(4), 575–583. https://doi.org/10.1002/jnr.20764

García-Bueno, B., Caso, J. R. y Leza, J. C. (2008). Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neuroscience and biobehavioral reviews, 32(6), 1136–1151. https://doi.org/10.1016/j.neubiorev.2008.04.001

Glaser, R. y Kiecolt-Glaser, J. K. (2005). Stress-induced immune dysfunction: implications for health. Nature reviews. Immunology, 5(3), 243–251. https://doi.org/10.1038/nri1571

Gratton, M. A., Eleftheriadou, A., Garcia, J., Verduzco, E., Martin, G. K., Lonsbury-Martin, B. L. y Vázquez, A. E. (2011). Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage. Hearing research, 277(1-2), 211–226. https://doi.org/10.1016/j.heares.2010.12.014

Harrop-Jones, A., Wang, X., Fernandez, R., Dellamary, L., Ryan, A. F., LeBel, C. y Piu, F. (2016). The Sustained-Exposure Dexamethasone Formulation OTO-104 Offers Effective Protection against Noise-Induced Hearing Loss. Audiology & neuro-otology, 21(1), 12–21. https://doi.org/10.1159/000441814

Hawkley, L. C. y Cacioppo, J. T. (2010). Loneliness matters: a theoretical and empirical review of consequences and mechanisms. Annals of behavioral medicine: a publication of the Society of Behavioral Medicine, 40(2), 218–227. https://doi.org/10.1007/s12160-010-9210-8

Hickox, A. E., Larsen, E., Heinz, M. G., Shinobu, L. y Whitton, J. P. (2017). Translational issues in cochlear synaptopathy. Hearing research, 349, 164–171. https://doi.org/10.1016/j.heares.2016.12.010

Huang, J. L., Zhang, Y. L., Wang, C. C., Zhou, J. R., Ma, Q., Wang, X., Shen, X. H. y Jiang, C. L. (2012). Enhanced phosphorylation of MAPKs by NE promotes TNF-α production by macrophage through α adrenergic receptor. Inflammation, 35(2), 527–534. https://doi.org/10.1007/s10753-011-9342-4

Jespersen, K. V., Otto, M., Kringelbach, M., Van Someren, E. y Vuust, P. (2019). A randomized controlled trial of bedtime music for insomnia disorder. Journal of sleep research, 28(4), e12817. https://doi.org/10.1111/jsr.12817

Johnson, J. D., Campisi, J., Sharkey, C. M., Kennedy, S. L., Nickerson, M., Greenwood, B. N. y Fleshner, M. (2005). Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience, 135(4), 1295–1307. https://doi.org/10.1016/j.neuroscience.2005.06.090

Kalinec F. (2016). El movimiento celular en la sintonía fina del oído..., y las bases moleculares de la “sordera causada por los iPods”. En A. R. Eynard., M. A. Valentich y R. A. Rovasio. Histología y Embriología Humanas - Bases Celulares y Moleculares (ed., 5a Revisada Edición, pp. 469-476). Ed. Médica Panamericana.

Kalinec, G. M., Lomberk, G., Urrutia, R. A. y Kalinec, F. (2017). Resolution of Cochlear Inflammation: Novel Target for Preventing or Ameliorating Drug-, Noise- and Age-related Hearing Loss. Frontiers in cellular neuroscience, 11, 192. https://doi.org/10.3389/fncel.2017.00192

Kirkegaard, M., Murai, N., Risling, M., Suneson, A., Järlebark, L. y Ulfendahl, M. (2006). Differential gene expression in the rat cochlea after exposure to impulse noise. Neuroscience, 142(2), 425–435. https://doi.org/10.1016/j.neuroscience.2006.06.037

Kujawa, S. G. y Liberman, M. C. (2009). Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. The Journal of neuroscience: the official journal of the Society for Neuroscience, 29(45), 14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009

Liberman, M. C. y Kujawa, S. G. (2017). Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hearing research, 349, 138–147. https://doi.org/10.1016/j.heares.2017.01.003

Liu, Y. Z., Wang, Y. X. y Jiang, C. L. (2017). Inflammation: The Common Pathway of Stress-Related Diseases. Frontiers in human neuroscience, 11, 316. https://doi.org/10.3389/fnhum.2017.00316

Maison, S. F., Usubuchi, H. y Liberman, M. C. (2013). Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. The Journal of neuroscience: the official journal of the Society for Neuroscience, 33(13), 5542–5552. https://doi.org/10.1523/JNEUROSCI.5027-12.2013

Maratos, A. S., Gold, C., Wang, X. y Crawford, M. J. (2008). Music therapy for depression. The Cochrane database of systematic reviews, (1), CD004517. https://doi.org/10.1002/14651858.CD004517.pub2

Miller, A. H., Maletic, V. y Raison, C. L. (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biological psychiatry, 65(9), 732–741. https://doi.org/10.1016/j.biopsych.2008.11.029

Miller, G. E., Cohen, S. y Ritchey, A. K. (2002). Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model. Health psychology: official journal of the Division of Health Psychology, American Psychological Association, 21(6), 531–541. https://doi.org/10.1037//0278-6133.21.6.531

Moore, K. W., de Waal Malefyt, R., Coffman, R. L. y O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual review of immunology, 19, 683–765. https://doi.org/10.1146/annurev.immunol.19.1.683

Muchnik, C., Amir, N., Shabtai, E. y Kaplan-Neeman, R. (2012). Preferred listening levels of personal listening devices in young teenagers: self reports and physical measurements. International journal of audiology, 51(4), 287–293. https://doi.org/10.3109/14992027.2011.631590

Munhoz, C. D., García-Bueno, B., Madrigal, J. L., Lepsch, L. B., Scavone, C. y Leza, J. C. (2008). Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 41(12), 1037–1046. https://doi.org/10.1590/s0100-879x2008001200001

Norman, G. J., Karelina, K., Zhang, N., Walton, J. C., Morris, J. S. y Devries, A. C. (2010). Stress and IL-1beta contribute to the development of depressive-like behavior following peripheral nerve injury. Molecular psychiatry, 15(4), 404–414. https://doi.org/10.1038/mp.2009.91

Oberto, M. G. y Defagó, M. D. (2022). Implicancia de la dieta en la composición y variabilidad de la microbiota intestinal: sus efectos en la obesidad y ansiedad. Pinelatinoamericana, 2(2), 137–152. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38373

O'Garra, A. y Vieira, P. (2004). Regulatory T cells and mechanisms of immune system control. Nature medicine, 10(8), 801–805. https://doi.org/10.1038/nm0804-801

Pace, T. W., Mletzko, T. C., Alagbe, O., Musselman, D. L., Nemeroff, C. B., Miller, A. H. y Heim, C. M. (2006). Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. The American journal of psychiatry, 163(9), 1630–1633. https://doi.org/10.1176/ajp.2006.163.9.1630

Portnuff, C. D., Fligor, B. J. y Arehart, K. H. (2011). Teenage use of portable listening devices: a hazard to hearing?. Journal of the American Academy of Audiology, 22(10), 663–677. https://doi.org/10.3766/jaaa.22.10.5

Rovasio, R. A. (2022). Diálogo entre la tripa y la mente. Pinelatinoamericana, 2(3), 156–170. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38630

Schroder, K. y Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821–832. https://doi.org/10.1016/j.cell.2010.01.040

Serrano-Miranda, E. G. (2022). El intestino-microbiota en los ejes reguladores del metabolismo. Pinelatinoamericana, 2(3), 225–239. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38949

Smith R. S. (1991). The macrophage theory of depression. Medical hypotheses, 35(4), 298–306. https://doi.org/10.1016/0306-9877(91)90272-z

Sorrells, S. F. y Sapolsky, R. M. (2007). An inflammatory review of glucocorticoid actions in the CNS. Brain, behavior, and immunity, 21(3), 259–272. https://doi.org/10.1016/j.bbi.2006.11.006

Thoma, M. V., La Marca, R., Brönnimann, R., Finkel, L., Ehlert, U. y Nater, U. M. (2013). The effect of music on the human stress response. PloS one, 8(8), e70156. https://doi.org/10.1371/journal.pone.0070156

Tsigos, C. y Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of psychosomatic research, 53(4), 865–871. https://doi.org/10.1016/s0022-3999(02)00429-4

Wakabayashi, K., Fujioka, M., Kanzaki, S., Okano, H. J., Shibata, S., Yamashita, D., Masuda, M., Mihara, M., Ohsugi, Y., Ogawa, K. y Okano, H. (2010). Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neuroscience research, 66(4), 345–352. https://doi.org/10.1016/j.neures.2009.12.008

Wang, J., Van De Water, T. R., Bonny, C., de Ribaupierre, F., Puel, J. L. y Zine, A. (2003). A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(24), 8596–8607. https://doi.org/10.1523/JNEUROSCI.23-24-08596.2003

Wohleb, E. S. y Delpech, J. C. (2017). Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Progress in neuro-psychopharmacology & biological psychiatry, 79(Pt A), 40–48. https://doi.org/10.1016/j.pnpbp.2016.04.013

Wohleb, E. S., Hanke, M. L., Corona, A. W., Powell, N. D., Stiner, L. M., Bailey, M. T., Nelson, R. J., Godbout, J. P. y Sheridan, J. F. (2011). β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. The Journal of neuroscience: the official journal of the Society for Neuroscience, 31(17), 6277–6288. https://doi.org/10.1523/JNEUROSCI.0450-11.2011

Zhou, J. R., Xu, Z. y Jiang, C. L. (2008). Neuropeptide Y promotes TGF-beta1 production in RAW264.7 cells by activating PI3K pathway via Y1 receptor. Neuroscience bulletin, 24(3), 155–159. https://doi.org/10.1007/s12264-008-0130-6

Zhu, C. B., Blakely, R. D. y Hewlett, W. A. (2006). The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 31(10), 2121–2131. https://doi.org/10.1038/sj.npp.1301029

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Pinelatinoamericana

Downloads

Download data is not yet available.