¿Los ácidos grasos esenciales de los alimentos pueden prevenir y mejorar las manifestaciones a largo plazo del post-Covid-19?
HTML ingles (English)
HTML
PDF ingles (English)
PDF

Palabras clave

COVID persistente
lípidos poliinsaturados dietarios
ácidos grasos esenciales
AGE
dieta

Cómo citar

Das , U. N., & Pinelatinoamericana , E. de. (2024). ¿Los ácidos grasos esenciales de los alimentos pueden prevenir y mejorar las manifestaciones a largo plazo del post-Covid-19?. Pinelatinoamericana, 4(1), 31–40. Recuperado a partir de https://revistas.unc.edu.ar/index.php/pinelatam/article/view/44572

Resumen

Las manifestaciones de COVID-19, asi como las observadas en el post-COVID y post-vacuna de ARNm pueden resultar en un “síndrome de COVID prolongado o persistente”. El autor propone que el síndrome de larga duración se debe a una deficiencia de ácidos grasos esenciales (AGE) y sus metabolitos. Los AGE y sus metabolitos inactivan el virus SARS-CoV-2, suprimen la formación y acción excesiva de ciertas citocinas, son citoprotectores, inhiben la activación de NF-kB y regulan la vía cGAS-STING, influyen en la microbiota intestinal y su metabolismo, y modulan la función de plaquetas, macrófagos y leucocitos. Regulan la secreción y función de los neurotransmisores, facilitan la regeneración de tejidos y la cicatrización de heridas. En vista de sus variadas acciones, es probable que los AGE sean beneficiosos en la prevención y el tratamiento del síndrome COVID de larga duración.

HTML ingles (English)
HTML
PDF ingles (English)
PDF

Citas

Al-Aly, Z., Xie, Y. y Bowe, B. (2021). High-dimensional characterization of post-acute sequelae of COVID-19. Nature, 594(7862), 259–264. https://doi.org/10.1038/s41586-021-03553-9.

Choutka, J., Jansari, V., Hornig, M. y Iwasaki, A. (2022). Unexplained post-acute infection syndromes. Nature medicine, 28(5), 911–923. https://doi.org/10.1038/s41591-022-01810-6.

Dani, M., Dirksen, A., Taraborrelli, P., Torocastro, M., Panagopoulos, D., Sutton, R. y Lim, P. B. (2021). Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clinical medicine (London, England), 21(1), e63–e67. https://doi.org/10.7861/clinmed.2020-0896.

Das, U. N. (2020a). Can Bioactive Lipids Inactivate Coronavirus (COVID-19)?. Archives of medical research, 51(3), 282–286. https://doi.org/10.1016/j.arcmed.2020.03.004.

Das, U. N. (2020b). Response to: Bioactive Lipids and Coronavirus (COVID-19)-further Discussion. Archives of medical research, 51(5), 445–449. https://doi.org/10.1016/j.arcmed.2020.04.004.

Das, U. N. (2021a). Bioactive lipid-based therapeutic approach to COVID-19 and other similar infections. Archives of medical science: AMS, 19(5), 1327–1359. https://doi.org/10.5114/aoms/135703.

Das, U. N. (2021b). Essential fatty acids and their metabolites in the pathobiology of (coronavirus disease 2019) COVID-19. Nutrition (Burbank, Los Angeles County, Calif.), 82, 111052. https://doi.org/10.1016/j.nut.2020.111052.

Das, U. N. (2022). Papel de los Lípidos Bioactivos en Psiquiatría, Inmunología, Neurología y Endocrinología (PINE). Pinelatinoamericana, 2(1), 56–81. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/37046

Davis, H. E., McCorkell, L., Vogel, J. M. y Topol, E. J. (2023). Long COVID: major findings, mechanisms and recommendations. Nature reviews. Microbiology, 21(3), 133–146. https://doi.org/10.1038/s41579-022-00846-2.

De Vadder, F., Grasset, E., Mannerås Holm, L., Karsenty, G., Macpherson, A. J., Olofsson, L. E. y Bäckhed, F. (2018). Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6458–6463. https://doi.org/10.1073/pnas.1720017115.

Goc, A., Niedzwiecki, A. y Rath, M. (2021). Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Scientific reports, 11(1), 5207. https://doi.org/10.1038/s41598-021-84850-1.

Gopaldas, M., Zanderigo, F., Zhan, S., Ogden, R. T., Miller, J. M., Rubin-Falcone, H., Cooper, T. B., Oquendo, M. A., Sullivan, G., Mann, J. J. y Sublette, M. E. (2019). Brain serotonin transporter binding, plasma arachidonic acid and depression severity: A positron emission tomography study of major depression. Journal of affective disorders, 257, 495–503. https://doi.org/10.1016/j.jad.2019.07.035.

Hibbeln, J. R., Linnoila, M., Umhau, J. C., Rawlings, R., George, D. T. y Salem, N., Jr (1998). Essential fatty acids predict metabolites of serotonin and dopamine in cerebrospinal fluid among healthy control subjects, and early- and late-onset alcoholics. Biological psychiatry, 44(4), 235–242. https://doi.org/10.1016/s0006-3223(98)00141-3.

Legan, T. B., Lavoie, B. y Mawe, G. M. (2022). Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterology and motility, 34(10), e14346. https://doi.org/10.1111/nmo.14346.

Lim, S. H., Ju, H. J., Han, J. H., Lee, J. H., Lee, W. S., Bae, J. M. y Lee, S. (2023). Autoimmune and Autoinflammatory Connective Tissue Disorders Following COVID-19. JAMA network open, 6(10), e2336120. https://doi.org/10.1001/jamanetworkopen.2023.36120.

Merad, M., Blish, C. A., Sallusto, F. y Iwasaki, A. (2022). The immunology and immunopathology of COVID-19. Science (New York, N.Y.), 375(6585), 1122–1127. https://doi.org/10.1126/science.abm8108.

Patrick, R. P. y Ames, B. N. (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 29(6), 2207–2222. https://doi.org/10.1096/fj.14-268342.

Pinchaud, K., Hafeez, Z., Auger, S., Chatel, J. M., Chadi, S., Langella, P., Paoli, J., Dary-Mourot, A., Maguin-Gaté, K. y Olivier, J. L. (2022). Impact of Dietary Arachidonic Acid on Gut Microbiota Composition and Gut-Brain Axis in Male BALB/C Mice. Nutrients, 14(24), 5338. https://doi.org/10.3390/nu14245338.

Pretorius, E., Vlok, M., Venter, C., Bezuidenhout, J. A., Laubscher, G. J., Steenkamp, J. y Kell, D. B. (2021). Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovascular diabetology, 20(1), 172. https://doi.org/10.1186/s12933-021-01359-7.

Thaweethai, T., Jolley, S. E., Karlson, E. W., Levitan, E. B., Levy, B., McComsey, G. A., McCorkell, L., Nadkarni, G. N., Parthasarathy, S., Singh, U., Walker, T. A., Selvaggi, C. A., Shinnick, D. J., Schulte, C. C. M., Atchley-Challenner, R., Alba, G. A., Alicic, R., Altman, N., Anglin, K., Argueta, U., … RECOVER Consortium (2023). Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA, 329(22), 1934–1946. https://doi.org/10.1001/jama.2023.8823.

Todorov, H., Kollar, B., Bayer, F., Brandão, I., Mann, A., Mohr, J., Pontarollo, G., Formes, H., Stauber, R., Kittner, J. M., Endres, K., Watzer, B., Nockher, W. A., Sommer, F., Gerber, S. y Reinhardt, C. (2020). α-Linolenic Acid-Rich Diet Influences Microbiota Composition and Villus Morphology of the Mouse Small Intestine. Nutrients, 12(3), 732. https://doi.org/10.3390/nu12030732.

Toelzer, C., Gupta, K., Yadav, S. K. N., Hodgson, L., Williamson, M. K., Buzas, D., Borucu, U., Powers, K., Stenner, R., Vasileiou, K., Garzoni, F., Fitzgerald, D., Payré, C., Gautam, G., Lambeau, G., Davidson, A. D., Verkade, P., Frank, M., Berger, I. y Schaffitzel, C. (2022). The free fatty acid-binding pocket is a conserved hallmark in pathogenic β-coronavirus spike proteins from SARS-CoV to Omicron. Science advances, 8(47), eadc9179. https://doi.org/10.1126/sciadv.adc9179.

Wan, J., Hu, S., Jacoby, J. J., Liu, J., Zhang, Y. y Yu, L. L. (2017). The impact of dietary sn-2 palmitic triacylglycerols in combination with docosahexaenoic acid or arachidonic acid on lipid metabolism and host faecal microbiota composition in Sprague Dawley rats. Food & function, 8(5), 1793–1802. https://doi.org/10.1039/c7fo00094d.

Wong, A. C., Devason, A. S., Umana, I. C., Cox, T. O., Dohnalová, L., Litichevskiy, L., Perla, J., Lundgren, P., Etwebi, Z., Izzo, L. T., Kim, J., Tetlak, M., Descamps, H. C., Park, S. L., Wisser, S., McKnight, A. D., Pardy, R. D., Kim, J., Blank, N., Patel, S., … Levy, M. (2023). Serotonin reduction in post-acute sequelae of viral infection. Cell, 186(22), 4851–4867.e20. https://doi.org/10.1016/j.cell.2023.09.013

Yan, B., Chu, H., Yang, D., Sze, K. H., Lai, P. M., Yuan, S., Shuai, H., Wang, Y., Kao, R. Y., Chan, J. F. y Yuen, K. Y. (2019). Characterization of the Lipidomic Profile of Human Coronavirus-Infected Cells: Implications for Lipid Metabolism Remodeling upon Coronavirus Replication. Viruses, 11(1), 73. https://doi.org/10.3390/v11010073.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2024 Pinelatinoamericana

Descargas

Los datos de descargas todavía no están disponibles.