Role of mitochondria and reactive oxygen species in the progression of heart failure

Authors

  • Gustavo Guzmán Mentesana Cátedras de Física Biomédica, Histología y Microscopía Electrónica, Universidad Nacional de Córdoba, Sanatorio Allende y Clínica Aconcagua, Córdoba.
  • Alejandra Baez Cátedras de Física Biomédica, Histología y Microscopía Electrónica, Universidad Nacional de Córdoba, Sanatorio Allende y Clínica Aconcagua, Córdoba.
  • Roque Cordoba Cátedras de Física Biomédica, Histología y Microscopía Electrónica, Universidad Nacional de Córdoba, Sanatorio Allende y Clínica Aconcagua, Córdoba.
  • Ricardo Domínguez Cátedras de Física Biomédica, Histología y Microscopía Electrónica, Universidad Nacional de Córdoba, Sanatorio Allende y Clínica Aconcagua, Córdoba.
  • Silvana Lo Presti Cátedras de Física Biomédica, Histología y Microscopía Electrónica, Universidad Nacional de Córdoba, Sanatorio Allende y Clínica Aconcagua, Córdoba.
  • Walter Rivarola Cátedras de Física Biomédica, Histología y Microscopía Electrónica, Universidad Nacional de Córdoba, Sanatorio Allende y Clínica Aconcagua, Córdoba.
  • Patricia Pons Cátedras de Física Biomédica, Histología y Microscopía Electrónica, Universidad Nacional de Córdoba, Sanatorio Allende y Clínica Aconcagua, Córdoba.
  • Ricardo Fretes Cátedras de Física Biomédica, Histología y Microscopía Electrónica, Universidad Nacional de Córdoba, Sanatorio Allende y Clínica Aconcagua, Córdoba.
  • Patrícia Paglini-Oliva Cátedras de Física Biomédica, Histología y Microscopía Electrónica, Universidad Nacional de Córdoba, Sanatorio Allende y Clínica Aconcagua, Córdoba.

DOI:

https://doi.org/10.31053/1853.0605.v67.n4.22567

Keywords:

mitochondria, heart insufficiency, iNOS, membrane lipoperoxidation

Abstract

Congestive heart failure (CHF) would be associated with mitochondrial abnormalities and increased of reactive species of oxygen (ROS). To clarify these issues we studied the structure, function of the mitochondrial enzyme nitro oxide synthase inducible (iNOS) and lipoperoxidation of membranes, one of their products through the peroxide nitrite ion (ONOO-), in the heart muscle of patients with heart failure congestive (ICC) grade III and IV (according to New York Heart Association). We included 25 patients who underwent cardiovas-cular surgery to biopsies of the heart muscle. They were stratified into a group with CHF (n = 18) and control group (n = 7). In di-chas bi-opsies analyzed the enzymatic activity of mitochondrial complex III spectrophotometrically, which was measured in mM.ubiquinona-1.mg prot, while the mitochondrial morphology was analyzed by the Zeiss electron microscope, the areas  were quantified with program Axionvision 4.6. Lipoperoxidation of membranes was measured by the presence of ONOO-by immunohistochemistry against primary an-tibody against 3-nitrotyrosine was used lab kit system biogenic steptobidin biotin peroxidase (SBA) and coloring triamiobencidina (TAB), it is made with semicuantificacion intensity SCORE test. The statistical test used was ANOVA. The heart muscle of patients with CHF showed that the mitochondrial area was reduced by 78% compared with the control (160.37 ?m2 ± 9.87) (936.81 ?m2 ± 78.48) p <0.0001. There was also a 70% reduction in complex III activity compared to control (1.9 10-2 mM ubiq.mim-prot 1.mg ± 12.6) (5.79 10-2mM ubiq.mim prot-1.mg ± 36.6) p <0.001. The presence of ONOO-was significantly increased in patients with CHF (p <0.05). Alterations ultraestructu-tural and functional mitochondria found in patients with CHF and increased ROS are involved in the measures of phy-siopathology CCI and whites should be taken into account for future therapies of this condition.

Downloads

Download data is not yet available.

References

Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, funtion and inhibition. Biochem. J. 2001, 357:593.

Massion PB, Feron O, Dessy C, Balligan JJ. Nitric Oxide and cardiac function: ten years after,

and continu-ing 2003, Cir. 93: 388.

J.M. McCord, Oxygen-Derived Free Radicals in Post-Ischemic Tissue Injury, New Eng. J. Med. 1985 312:159-163.

Tsutsi H. Oxidative stress in heart failure : the role of mitochondria. Int. Med. 2006, 40, 1177-1182.

Anilkumar N, Sirker A, Shah AM. Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure Front Biosci. 2009 14:3168-87.

Garg, N. M Front in Bioscience 2005, 10:1341-1345.

Marín-Garcia J, Goldenthal MJ, Ananthakrishnan R, Pierpont MF. J Card Fail 2000, 6: 321-329.

Rustin P, Lebidois J, Chretien D, Bourgeron T, Piechaud JF et al. J Pediatr 1994, 124: 224-28.

Arbustini E, Diegoli M, Fasani R, Grasso M, Morbini P, et al. Am J Pathol 1998, 153: 1501-1510.

Schon EA, Bonilla E, DiMauro S. J Bioenerg Biomembr 1997, 29: 131-149.

Marin- Garcia J. J Inherit Metab Dis 1997, 20: 674-680.

Anderson S, Bankier AT, Barrell BG, DE Brujin et al. Nature 1981, 290: 457-465.

Shadel GS, Clayton DA. Annu Rev Biochem 1997, 66: 409-435.

Marin- Garcia J. Rev Esp Cardiol 2002, 55: 1293-1310.

Kumar S, Kain V, Sitasawad SL:Cardiotoxicity of calmidazolium chloride is attributed to calcium aggrava-tion, oxidative and nitrosative stress and apoptosis. Free Radic Biol Med. 2009.

Garg N. Mitochondrial disorders in chagasic cardiomyopathy. Front Biosci. 2005, 10:1341-1354.

Marin-Garcia J, Pi Y, Goldenthal MJ. Cardiovasc Drugs Ther. 2006, 20: 477-49

Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, et al. Mitochondrial DNA damage and dys-function associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 2001;88:529-535.

Lenaz, G., Bovina, C., D´Aurelio, M., Fato, R., Formiggini, G., Genova, M., Giuliano, G., Pich, M., Paolucci, U., Castelli, G.. Ann N. Y. Acad. Sci. 2002, 959, 199-213.

Halliwell B, Whiteman M: Measuring reactive species and oxidative damage in vivo and in cell

culture: how should you do it and what do the results mean?. Br J Pharmacol, 2004, 142:231-55

Le Chen, Qizhi Gong, James P. and A.A. Knowlton: Mitochondrial OPA1, Apoptosis and Heart Failure. Car-diovasc Res: 2009, 181v1-181.

Kuzcaya N, Weissmann N, Harrison D G, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascor-bic acid, and thiols. J Biol. Chem. 2003, 278: 22546.

Guillermo Zalba, Fortuño Ana, Díez Javier: Oxidative stress and atherosclerosis in early chronic kidney dis-ease. Nephrol Dial Transplant, 2006, 21:2686-2690.

Liu Shang Xi, Hou Fan Fan, Guo Zhi Jian, Nagai Ryoji, Zhang Wei Ru, Liu Zhi Qiang, Zhou Zhan Mei, Zhou Mei, Di Xie , Wang Guo Bao, Zhang Xun: Advanced Oxidation Protein Products Accelerate Atherosclerosis Through Promoting Oxidative Stress and Inflammation. Arterioscler Thromb Vasc Biol, 2006, 26:1156-1162.

Cadenas E, Poderoso JJ, Antunes F, Boveris A. Analysis of the pathways of nitric oxde utilization in mito-condria. Free Radic 2000, Res 33:747

Wen JJ, Bhatia V, Popov VL, Garg NJ. Am J Pathol. 2006, 169:1953-1964.

Long X, Goldenthal MJ, Wu GM, Marin-Garcia J. Mol Cell Cardiol. 2004, 37: 63-70.

Viatkina G, Vandanajay B, Arpad G, Papaconstantinou J.Biochim Biophysic 2004, 689: 162-173;.

Published

2010-12-07

How to Cite

1.
Guzmán Mentesana G, Baez A, Cordoba R, Domínguez R, Lo Presti S, Rivarola W, Pons P, Fretes R, Paglini-Oliva P. Role of mitochondria and reactive oxygen species in the progression of heart failure. Rev Fac Cien Med Univ Nac Cordoba [Internet]. 2010 Dec. 7 [cited 2024 Jul. 17];67(4):150-8. Available from: https://revistas.unc.edu.ar/index.php/med/article/view/22567

Issue

Section

Original Papers