Evaluation in 18 hours of Cardiac Dynamics with the Mathematical Law of Dynamic Systems

Authors

  • Signed Esperanza Prieto Bohórquez
  • Javier Oswaldo Rodríguez Velásquez
  • Catalina Correa Herrera
  • Juan Mauricio Pardo Oviedo
  • Javier Ardila

DOI:

https://doi.org/10.31053/1853.0605.v74.n4.16308

Keywords:

chaos, fractal, law, chaotic law, cardiac dynamics, diagnosis, arrhythmia

Abstract

Introduction: an exponential law has been found for chaotic dynamic cardiac systems, making it possible to quantify the differences between normal and pathological cardiac dynamics. Methodology: 120 electrocardiographic records were analyzed, 40 corresponded to subjects within the limits of normality and 80 with different pathologies. For each holter the attractors generated with the data during 18 hours and throughout the dynamics were analyzed. The fractal dimension of the attractor and its spatial occupation were calculated. To these measures was applied the diagnosis mathematical evaluation previously developed, comparing the evaluation for 18 hours and for the whole registry; sensitivity, specificity and Kappa coefficient were finally calculated. Results: For the normal dynamics, the occupancy spaces in the Kp grid were between 200 and 381 for the evaluation of the whole holter, and between 201 and 384 in the evaluation during 18 hours, showing the closeness in the measurements, which allows that the decrease in the time of the evaluation is consistent, this same proximity was observed for the diseased and acute dynamics. Conclusion: It was evidenced the clinical applicability in 18 hours of the exponential law in the chaotic cardiac dynamics associated with arrhythmias showing to be useful for the prediction of the evolution towards acute states of the dynamics

Downloads

Download data is not yet available.

References

Devaney R. A first course in chaotic dynamical systems theory and experiments. Reading Mass: Addison-Wesley 1992.

Peitgen H, Jürgens H, Saupe D. Strange attractors, the locus of chaos. En: Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag, 1992, pp. 655-768.

Goldberger AL, Bhargava V, West BJ, Mandell AJ. Some observations on the question: Is ventricular fibrillation "chaos?" Physica D 1986;19:282-9.

Mandelbrot B. Cambios de escala y leyes potenciales sin geometría. En: The Fractal Geometry of Nature. San Francisco: Freeman Ed., 1972, pp. 477-87.

Mandelbrot B. Árboles jerárquicos o de clasificación, y la dimensión. En: Los Objetos Fractales. Tusquets Eds S.A. Barcelona. 2000: 161-6.

Mandelbrot B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967; 156: 636-38.

OMS- Centro de prensa. Día mundial del corazón: Enfermedades Cardiovasculares causan 1,9 millones de muertes al año en las Américas. Nota informativa octubre de 2012. En: http://www.paho.org/bol/index.php?option=com_content&view=article&id=1514&catid=667:notas-de-prensa.

Mozaffarian D, Benjamin E, Go AS, Arnett DK, Blaha MJ, et al. Heart Disease and Stroke Statistics—2015 Update. A Report From the American Heart Association. Circulation 2015; 2015;131:e29-e322.

Barron H, Viskin S. Autonomic markers and prediction of cardiac death after myocardial infarction. Lancet 1998; 351: 461 – 2.

Kouchoukos NT. Kirklin/Barratt-Boyes Cardiac Surgery: Morphology, Diagnostic Criteria, Natural History, Techniques, Results, and Indications. Michigan: Churchill Livingstone, 2003.

Gómez M, Enciso C, Peña E, Segura OD, Nieto VH. Ecais study: inadvertent cardiovascular adverse events in sepsis. Med Intensiva 2012; 36(5):343-350

Goldberger A, Amaral L, Hausdorff JM, Ivanov P, Peng Ch, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. PNAS 2002; 99: 2466 - 2472.

Higgins JP. “Nonlinear systems in medicine”. Yale. J. Biol. Med. 2002; 75: 247-60.

Costa M, Goldberger AL, Peng CK. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys Rev Lett. 2002;89 (6): 0681021 – 4.

Wu GQ, Arzeno NM, Shen LL, Tang DK, Zheng DA, et al. Chaotic Signatures of Heart Rate Variability and Its Power Spectrum in Health, Aging and Heart Failure. PLoS ONE. (2) 4 (2009), e4323.

Braun C, Kowallik P, Freking A, Hadeler D, Kniffki K, Meesmann M. Demonstration of nonlinear components in heart rate variability of healthy persons Am. J. Physiol. 1998; 275, H1577–H1584.

Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, et al. 2001 Entropy, entropy rate and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 48, 1282–1291.

Guzzetti S, et al. 2005 Symbolic dynamics of heart rate variability: a probe to investigate cardiac autonomic modulation. Circulation 112, 465–470.

Maestri R, Pinna GD, Accardo A, Allegrini P, Balocchi R, et al. Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J. Cardiovasc. Electrophysiol. 2007; 18: 425–433.

Voss A, Schulz S, Schroeder R, Baumert M, Caminal P, Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys EngSci. 2009; 367:277-96.

J. Perkiömäki TH, Mäkikallio HV, Huikuri, Fractal and Complexity Measures of Heart Rate Variability. Clin. Exp. Hypertens. 2005; 2(3):149–158.

Rodríguez J. Mathematical law of chaotic cardiac dynamic: Predictions of clinic application. J Med Med Sci. 2011; 2(8):1050-1059.

Rodríguez J, Correa C, Melo M, Domínguez D, Prieto S, et al. Chaotic cardiac law: Developing predictions of clinical application. J. Med. Med. Sci. 2013;4(2): 79-84.

Colombia. Ministerio de salud. Resolución número 8430. Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Bogotá D.C.;1993.

Einstein A. Sobre la teoría de la relatividad y otras aportaciones científicas. Madrid: Sarpe, 1983, pp. 23-32.

Einstein A. Sobre la teoría de la relatividad y otras aportaciones científicas. Madrid: Sarpe, 1983, pp. 78-84.

Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, et al. Physical-mathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J. Med. Med. Sci 2014; 5(5): 102-108.

Rodríguez J, Prieto S, Domínguez D, Correa C, Melo M, et al. Application of the chaotic power law to cardiac dynamics in patients with arrhythmias. Rev. Fac. Med. 2014;62(4):539-46.

Pineda M, Matiz H, Rozo R. Enfermedad coronaria. Bogotá: Editorial Kimpres Ltda., 2002.

Dey P, Rajesh L. Fractal dimesion in endometrial carcinoma. Anal Quant Cytol Histol 2004;26(2):113-6.

Garte S. Fractal properties of the human genome. J Theor Biol 2004; 230(2):251-60.

Kikuchi A, Kozuma S, Yasugi T, Taketani Y. Fractal analysis of the suface growth patterns in endometrioid endometrial adenocarcinoma. Gynecol Obstet Invest 2004;58(2):61-7.

Zatloukal Z. Granulometry and fractal dimensions. Ceska Slov Farm 2003; 52(5):244-7.

Gazit Y, Baish JW, Safabaksh N. Fractal characteristics of tumour vascular architecture during tumour growth and regression. Microcirculation. 1997; 395-402.

Lefebvre F, Benali HA. Fractal approach to the segmentation of microcalcifications in digital mammograms. Med. Phys. 1995; 22: 381 – 390.

Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med Phys 2010; 10: 1-6.

Prieto S, Rodríguez J, Correa C, Soracipa Y. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization. BMC Medical Physics 2014, 14(2): 1-9.

Rodríguez J. Teoría de unión al HLA clase II teorías de Probabilidad Combinatoria y Entropía aplicadas a secuencias peptídicas. Inmunología. 2008; 27(4): 151-166.

Rodríguez J, Prieto S, Correa C, Pérez C, Mora J, et al. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Medical Physics. BMC Medical Physics. 2013; 13: 1-3.

Rodríguez J, Bernal P, Prieto S, Correa C. Teoría de péptidos de alta unión de malaria al glóbulo rojo. Predicciones teóricas de nuevos péptidos de unión y mutaciones teóricas predictivas de aminoácidos críticos. Inmunología. 2010; 29(1): 7-19.

Rodríguez J, Prieto S, Correa C, Bautista J, Velasco A, et al. Mathematics physical assessment of cardiac dynamics based on theory of probability and proportions of entropy in the Intensive care Unit for patients with arrhythmia. International Conference on Medical Phyiscs. Aug. 3-5 2015. Birmingham UK. J Nucl Med Radiat Ther. 2015;6:4

Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca. Predicciones de aplicación clínica. En: Rodríguez LG, Coordinador. La emergencia de los enfoques de la complejidad en América Latina: implicancias políticas, epistemológicas y metodológicas para las ciencias del siglo XXI. Tomo 1,1a ed. Buenos Aires: Comunidad Editora Latinoamericana; 2015. p. 247-64.

Rodríguez J, Prieto S, Correa C, Mendoza F, Weiz G, et al. Physical mathematical evaluation of the cardiac dynamic applying the Zipf – Mandelbrot law. Journal of Modern Physics 2015, 6: 1881-1888. http://dx.doi.org/10.4236/jmp.2015.613193

Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010; 27(3): 211-218.

Rodríguez J. Dynamical systems applied to dynamic variables of patients from the intensive care unit (ICU): Physical and mathematical mortality predictions on ICU. J. Med. Med. Sci. 2015; 6(8):209-220.

Published

2017-12-08

How to Cite

1.
Prieto Bohórquez SE, Rodríguez Velásquez JO, Correa Herrera C, Pardo Oviedo JM, Ardila J. Evaluation in 18 hours of Cardiac Dynamics with the Mathematical Law of Dynamic Systems. Rev Fac Cien Med Univ Nac Cordoba [Internet]. 2017 Dec. 8 [cited 2024 Jul. 17];74(4):313-9. Available from: https://revistas.unc.edu.ar/index.php/med/article/view/16308

Issue

Section

Original Papers