Datos correlacionados espacialmente: análisis estructural
DOI:
https://doi.org/10.33044/revem.41782Palabras clave:
Proceso estocástico, Datos Espacialmente correlacionados, EstacionariedadResumen
En este artículo introducimos y estudiamos el marco teórico subyacente para datos espacialmente correlacionados. Más precisamente, definimos el proceso que genera los datos, estudiamos sus diferentes estructuras de covarianza y caracterizamos las diferentes clases de estacionariedad consideradas habitualmente para este tipo de datos. Además, estudiamos en profundidad el semivariograma teórico y empírico, la herramienta tal vez más utilizada para medir correlación espacial. Consideramos que este trabajo puede ser un material útil para el estudio y la enseñanza de los datos espaciales y sus principales características, que potencialmente pueden introducirse en un curso moderno de estadística.
Descargas
Referencias
Atkinson, P. M., y Lloyd, C. D. (2014). Geostatistical models and spatial interpolation. En M. M. Fischer y P. Nijkamp (Eds.), Handbook of regional science (pp. 1461–1476). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-23430-9_75
Banerjee, S., Carlin, B. P., y Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC.
Berke, O. (2004). Exploratory disease mapping: Kriging the spatial risk function from regional count data. International journal of health geographics, 3, 18. doi: 10.1186/1476-072X-3-18
Bivand, R. S., Pebesma, E. J., Gómez-Rubio, V., y Pebesma, E. J. (2008). Applied spatial data analysis with r. Springer.
Chica-Olmo, J., y Cano-Guervos, R. (2020). Does my house have a premium or discount in relation to my neighbors? a regression-kriging approach. SocioEconomic Planning Sciences, 72, 100914. doi: 10.1016/j.seps.2020.100914
Chiles, J.-P., y Delfiner, P. (2012). Geostatistics: modeling spatial uncertainty. John Wiley & Sons.
Cressie, N. (1993). Statistics for spatial data. John Wiley and Sons, Inc.
Derdouri, A., y Murayama, Y. (2020, 05). A comparative study of land price estimation and mapping using regression kriging and machine learning algorithms across fukushima prefecture, japan. Journal of Geographical Sciences, 30, 794-822. doi: 10.1007/s11442-020-1756-1
Dubin, R. A. (1992). Spatial autocorrelation and neighborhood quality. Regional Science and Urban Economics, 22(3), 433-452. doi: https://doi.org/10.1016/0166-0462(92)90038-3
Fernández-Avilés, G. (2009). Spatial regression analysis vs. kriging methods for spatial estimation. International Advances in Economic Research, 15, 44-58. doi:
10.1007/s11294-008-9189-0
Fischer, M. M., y Wang, J. (2011). Spatial data analysis: models, methods and techniques. Springer Science & Business Media. Gallardo, A. (2006). Geostadística. Ecosistemas, 3.
Gámez, M., Montero, J., y Rubio, N. (2000). Kriging methodology for regional economic analysis: Estimating the housing price in albacete. International Advances in Economic Research, 6, 438-450. doi: 10.1007/BF02294963
García Arancibia, R., Llop, P., y Lovatto, M. (2023). Nonparametric prediction for univariate spatial data: Methods and applications. pre-print, 1-45.
García Soidán, P., Febrero Bande, M., y González Manteiga, W. (2004, 03). Nonparametric kernel estimation of an isotropic variogram. Journal of Statistical Planning and Inference, 121, 65-92. doi: 10.1016/S0378-3758(02)00507-4
Goovaerts, P. (2008). Geostatistical analysis of health data: State-of-the-art and perspectives. En A. Soares, M. J. Pereira, y R. Dimitrakopoulos (Eds.), Geostatistics for environmental applications: Proceedings of the sixth european conference on geostatistics for environmental applications (pp. 3–22). Dordrecht: Springer Netherlands. doi: 10.1007/978-1-4020-6448-7_1
Haining, R. (2013). Spatial data and statistical methods: A chronological overview. En M. M. Fischer y P. Nijkamp (Eds.), Handbook of regional science (pp. 1277– 1294). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-23430-9_71
Haining, R. P., Kerry, R., y Oliver, M. A. (2010). Geography, spatial data analysis, and geostatistics: An overview. Geographical Analysis, 42(1), 7-31. doi: 10.1111/ j.1538-4632.2009.00780.x
Kerry, R., Goovaerts, P., Haining, R., y Ceccato, V. (2010). Applying geostatistical analysis to crime data: Car-related thefts in the baltic states. Geographical analysis, 42, 53-77. doi: 10.1111/j.1538-4632.2010.00782.x
Longley, P. (2005). Geographic information systems and science. John Wiley & Sons.
Montero, J.-M., Fernández-Avilés, G., y Mateu, J. (2015). Spatial and spatio-temporal geostatistical modeling and kriging. John Wiley and Sons, Ltd.
Montes-Rojas, G. V. (2012). Optimal spatial prediction and the construction of regional indexes. The Journal of Economic Asymmetries, 9(1), 1-21. https://doi.org/10.1016/j.jeca.2012.01.001
Morales, J., Stein, A., Flacke, J., y Zevenbergen, J. (2020). Predictive land value modelling in guatemala city using a geostatistical approach and space syntax. International Journal of Geographical Information Science, 34, 1-24. doi: 10.1080/ 13658816.2020.1725014
Rikken, M., y Van Rijn, R. (1993). Soil pollution with heavy metals - an inquiry into spatial variation, cost of mapping and the risk evaluation of copper, cadmium, lead and zinc in the oodplains of the meuse west of stein. Utrecht: Department of Physical Geography, Utrecht University.
Siabato, W., y Guszmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(1), 1-22.
Smith, T. (2014). Notebook on spatial data analysis. Descargado de https:// www.seas.upenn.edu/~tesmith/NOTEBOOK/index.html Tsutsumi, M., y Seya, H. (2008). Measuring the impact of large-scale transportation projects on land price using spatial statistical models. Papers in Regional Science, 87(3), 385-401. doi: https://doi.org/10.1111/j.1435-5957.2008.00192.x
Valente, J., Wu, S., Gelfand, A., y Sirmans, C. (2005, 02). Apartment rent prediction using spatial modeling. Journal of Real Estate Research, 27, 105-136. doi: 10.1080/10835547.2005.12091148
Vasan, S., y Alcantara, A. (2016). Gis-based methods for estimating missing poverty rates & projecting future rates in census tracts. Review of Economics & Finance, 3, 1-13.
Wackernagel, H. (2003). Multivariate geostatistics. Springer. Wackernagel, H. (2006). Geostatistics. En Encyclopedia of statistical sciences. American Cancer Society. Descargado de https://onlinelibrary.wiley .com/doi/abs/10.1002/0471667196.ess5085.pub2 doi: 10.1002/ 0471667196.ess5085.pub2
Webster, R., y Oliver, M. (2007). Geostatistics for environmental scientists (2th ed.). Wiley. Zhang, J., Atkinson, P., y Goodchild, M. F. (2014). Scale in spatial information and analysis. CRC Press.
Zhao, Y., y Wall, M. M. (2004). Investigating the use of the variogram for lattice data. Journal of Computational and Graphical Statistics, 13(3), 719–738.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Mariel Guadalupe Lovatto, Pamela Llop, Rodrigo García Arancibia
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0), que permite:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) después del proceso de publicación, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).