Spatially correlated data: structural analysis

Authors

  • Mariel Guadalupe Lovatto Universidad Nacional del Litoral. Facultad de Ingeniería Química - Conicet
  • Pamela Llop Universidad Nacional del Litoral. Facultad de Ingeniería Química - Conicet
  • Rodrigo García Arancibia Universidad Nacional del Litoral. Instituto de Economía Aplicada Litoral (IECAL-FCE) - CONICET

DOI:

https://doi.org/10.33044/revem.41782

Keywords:

Stochastic Process, Spatially Correlated Data, Stationarity

Abstract

We introduce and investigate the underlying theoretical framework for spatially correlated data in this article. More specifically, we characterise the mechanism that generates the data, investigate its various covariance structures, and characterise the many stationarity classes that are typically considered for this type of data. Furthermore, we investigate the theoretical and empirical semivariogram, which is likely the most extensively used tool for measuring spatial correlation. We believe that this work can be a valuable resource for the study of spatial data and its primary properties, which might be integrated into a modern statistics course.

 

 

 

Downloads

Download data is not yet available.

References

Atkinson, P. M., y Lloyd, C. D. (2014). Geostatistical models and spatial interpolation. En M. M. Fischer y P. Nijkamp (Eds.), Handbook of regional science (pp. 1461–1476). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-23430-9_75

Banerjee, S., Carlin, B. P., y Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC.

Berke, O. (2004). Exploratory disease mapping: Kriging the spatial risk function from regional count data. International journal of health geographics, 3, 18. doi: 10.1186/1476-072X-3-18

Bivand, R. S., Pebesma, E. J., Gómez-Rubio, V., y Pebesma, E. J. (2008). Applied spatial data analysis with r. Springer.

Chica-Olmo, J., y Cano-Guervos, R. (2020). Does my house have a premium or discount in relation to my neighbors? a regression-kriging approach. SocioEconomic Planning Sciences, 72, 100914. doi: 10.1016/j.seps.2020.100914

Chiles, J.-P., y Delfiner, P. (2012). Geostatistics: modeling spatial uncertainty. John Wiley & Sons.

Cressie, N. (1993). Statistics for spatial data. John Wiley and Sons, Inc.

Derdouri, A., y Murayama, Y. (2020, 05). A comparative study of land price estimation and mapping using regression kriging and machine learning algorithms across fukushima prefecture, japan. Journal of Geographical Sciences, 30, 794-822. doi: 10.1007/s11442-020-1756-1

Dubin, R. A. (1992). Spatial autocorrelation and neighborhood quality. Regional Science and Urban Economics, 22(3), 433-452. doi: https://doi.org/10.1016/0166-0462(92)90038-3

Fernández-Avilés, G. (2009). Spatial regression analysis vs. kriging methods for spatial estimation. International Advances in Economic Research, 15, 44-58. doi:

10.1007/s11294-008-9189-0

Fischer, M. M., y Wang, J. (2011). Spatial data analysis: models, methods and techniques. Springer Science & Business Media. Gallardo, A. (2006). Geostadística. Ecosistemas, 3.

Gámez, M., Montero, J., y Rubio, N. (2000). Kriging methodology for regional economic analysis: Estimating the housing price in albacete. International Advances in Economic Research, 6, 438-450. doi: 10.1007/BF02294963

García Arancibia, R., Llop, P., y Lovatto, M. (2023). Nonparametric prediction for univariate spatial data: Methods and applications. pre-print, 1-45.

García Soidán, P., Febrero Bande, M., y González Manteiga, W. (2004, 03). Nonparametric kernel estimation of an isotropic variogram. Journal of Statistical Planning and Inference, 121, 65-92. doi: 10.1016/S0378-3758(02)00507-4

Goovaerts, P. (2008). Geostatistical analysis of health data: State-of-the-art and perspectives. En A. Soares, M. J. Pereira, y R. Dimitrakopoulos (Eds.), Geostatistics for environmental applications: Proceedings of the sixth european conference on geostatistics for environmental applications (pp. 3–22). Dordrecht: Springer Netherlands. doi: 10.1007/978-1-4020-6448-7_1

Haining, R. (2013). Spatial data and statistical methods: A chronological overview. En M. M. Fischer y P. Nijkamp (Eds.), Handbook of regional science (pp. 1277– 1294). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-23430-9_71

Haining, R. P., Kerry, R., y Oliver, M. A. (2010). Geography, spatial data analysis, and geostatistics: An overview. Geographical Analysis, 42(1), 7-31. doi: 10.1111/ j.1538-4632.2009.00780.x

Kerry, R., Goovaerts, P., Haining, R., y Ceccato, V. (2010). Applying geostatistical analysis to crime data: Car-related thefts in the baltic states. Geographical analysis, 42, 53-77. doi: 10.1111/j.1538-4632.2010.00782.x

Longley, P. (2005). Geographic information systems and science. John Wiley & Sons.

Montero, J.-M., Fernández-Avilés, G., y Mateu, J. (2015). Spatial and spatio-temporal geostatistical modeling and kriging. John Wiley and Sons, Ltd.

Montes-Rojas, G. V. (2012). Optimal spatial prediction and the construction of regional indexes. The Journal of Economic Asymmetries, 9(1), 1-21. https://doi.org/10.1016/j.jeca.2012.01.001

Morales, J., Stein, A., Flacke, J., y Zevenbergen, J. (2020). Predictive land value modelling in guatemala city using a geostatistical approach and space syntax. International Journal of Geographical Information Science, 34, 1-24. doi: 10.1080/ 13658816.2020.1725014

Rikken, M., y Van Rijn, R. (1993). Soil pollution with heavy metals - an inquiry into spatial variation, cost of mapping and the risk evaluation of copper, cadmium, lead and zinc in the oodplains of the meuse west of stein. Utrecht: Department of Physical Geography, Utrecht University.

Siabato, W., y Guszmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(1), 1-22.

Smith, T. (2014). Notebook on spatial data analysis. Descargado de https:// www.seas.upenn.edu/~tesmith/NOTEBOOK/index.html Tsutsumi, M., y Seya, H. (2008). Measuring the impact of large-scale transportation projects on land price using spatial statistical models. Papers in Regional Science, 87(3), 385-401. doi: https://doi.org/10.1111/j.1435-5957.2008.00192.x

Valente, J., Wu, S., Gelfand, A., y Sirmans, C. (2005, 02). Apartment rent prediction using spatial modeling. Journal of Real Estate Research, 27, 105-136. doi: 10.1080/10835547.2005.12091148

Vasan, S., y Alcantara, A. (2016). Gis-based methods for estimating missing poverty rates & projecting future rates in census tracts. Review of Economics & Finance, 3, 1-13.

Wackernagel, H. (2003). Multivariate geostatistics. Springer. Wackernagel, H. (2006). Geostatistics. En Encyclopedia of statistical sciences. American Cancer Society. Descargado de https://onlinelibrary.wiley .com/doi/abs/10.1002/0471667196.ess5085.pub2 doi: 10.1002/ 0471667196.ess5085.pub2

Webster, R., y Oliver, M. (2007). Geostatistics for environmental scientists (2th ed.). Wiley. Zhang, J., Atkinson, P., y Goodchild, M. F. (2014). Scale in spatial information and analysis. CRC Press.

Zhao, Y., y Wall, M. M. (2004). Investigating the use of the variogram for lattice data. Journal of Computational and Graphical Statistics, 13(3), 719–738.

Downloads

Published

2024-12-20

Issue

Section

Artículos de Matemática

How to Cite

[1]
Lovatto, M.G. et al. 2024. Spatially correlated data: structural analysis. Revista de Educación Matemática. 39, 3 (Dec. 2024), 5–40. DOI:https://doi.org/10.33044/revem.41782.