A tour of probability distributions

Authors

  • María Laura Nores FAMAF - Universidad Nacional de Córdoba

DOI:

https://doi.org/10.33044/revem.30460

Keywords:

discrete random variable, continuous random variable, density, independence

Abstract

Random variables have a probability distribution that under certain circumstances is given in terms of a known expression. Many times this formula is easily deduced from the context in which the random variable arises, while at other times it is not so clear. In this article, we seek to take a further step in understanding the most well-known probability distributions, trying to get deep into the motivation that gives them origin and in the deduction of their expression, also highlighting existing relationships between some distributions. In this way, the work contributes to provide elements to discern when it is reasonable to assume a certain distribution for a random variable under consideration.

Downloads

Download data is not yet available.

References

Agresti, A., Franklin, C., y Klingenberg, B. (2018). Statistics: The art and science of learning from data, 4th ed. Harlow: Pearson.

Ash, R. B. (2008). Basic probability theory. Mineola: Dover Publications.

Bertsekas, D. P., y Tsitsiklis, J. N. (2008). Introduction to probability (2nd ed.). Belmont: Athena Scientific.

Blitzstein, J. K., y Hwang, J. (2015). Introduction to probability. Boca Raton: CRC Press.

Canavos, G. (1995). Probabilidad y estadística: Aplicaciones y métodos. México: Mc Graw Hill.

Devore, J. L. (2005). Probabilidad y estadística para ingeniería y ciencias (6a ed.). México: Thomson.

Grimmett, G., y Stirzaker, D. (2001). Probability and random processes (3rd ed.). Oxford: Oxford University Press.

Hoel, P. G., Port, S. C., y Stone, C. J. (1971). Introduction to probability theory. Boston: Houghton Mifflin Company.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ross, S. M. (1999). Simulación (2a ed.). México: Prentice Hall.

Ross, S. M. (2014). A first course in probability (9th ed.). Boston: Pearson.

Wackerly, D. D., Mendenhall, W., y Scheaffer, R. L. (2010). Estadística matemática con aplicaciones (7a ed.). México: Cengage Learning.

Downloads

Published

2021-07-30

Issue

Section

Artículos de Matemática

How to Cite

[1]
Nores, M.L. 2021. A tour of probability distributions. Revista de Educación Matemática. 36, 2 (Jul. 2021), 7–43. DOI:https://doi.org/10.33044/revem.30460.