Clarifications and didactic recommendations about the statistical and probabilistic nature of the radioactive decay law

Authors

DOI:

https://doi.org/10.55767/2451.6007.v36.n2.47478

Keywords:

Radioactivity, Radioactive Decay Law, Statistic, Probability, Experimental modelling

Abstract

The radioactive decay law has a statistical and probabilistic behavior that is often misinterpreted as a fully deterministic phenomenon due to superficial explanations of the process that fail to emphasize its random nature. This article is motivated by the need to clarify the role of probability and statistics in this process, a topic that is usually not given the importance it deserves, and which leads to conceptual doubts and misunderstandings among both students and physics educators. The article’s goal is to provide physics educators working with this phenomenon with a model of the law of radioactive decay through a quantitative, statistic and probabilistic analysis that clarifies commonly misunderstood concepts using a didactic example. The incorporation of a probabilistic and statistics model not only clarifies the true statistical nature of this physical phenomenon but also significantly contributes to the development of students' scientific and mathematical skills, enabling them to engage with and understand this process in greater depth.

References

Alonso, M., & Finn, E. J. (1986). Física, Volumen III: Campos, Ondas y Radiaciones. Buenos Aires: Addison-Wesley Iberoamericana.

Burcham, W. E. (2003). Física Nuclear. Barcelona: Reverté.

Campbell, S., & Duarte, J. (2008). Poisson Statistics of Radioactive Decay. Massachusetts: MIT Department of Physics.

Ehmann, W. D., & Vance, D. E. (1991). Radiochemistry and Nuclear Methods of Analysis. New York: John Wiley & Sons.

Fernández de la Mora, J. (2002). Introducción a la mecánica estadística y sus aplicaciones en la física. Madrid: Pirámide.

Huang, K. (1987). Introducción a Mecánica Estadística. Barcelona: Reverté.

Huestis, S. P. (2002). Understanding the Origin and Meaning of the Radioactive Decay Equation. Journal of Geoscience Education, 524-527.

Krane, K. S. (1987). Introductory Nuclear Physics. New York: John Wiley & Sons.

Mamane, A., & Benjelloun, N. (2019). Development and Experimentation of New Mathematical Model for Teaching-Learning the Radioactive Decay. Education Sciences, 9(2), 123. https://doi.org/10.3390/educsci9020123

Morrison, D. F. (2003). Estadística Aplicada para ingeniería y Ciencias. Barcelona: Prentice Hall.

Prather, E. (2005). Students' Beliefs About the Role of Atoms in Radioactive Decay and Half-life. Journal of Geoscience Education, 53(4), 345–354. https://doi.org/10.5408/1089-9995-53.4.345

Ross, S. M. (2012). Introducción a la Probabilidad y Estadística para Ingenieros y Científicos. Madrid: Elsevier.

Tipler, P. A., & Llewellyn, R. A. (2009). Física Moderna. Barcelona: Reverté.

Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probabilidad y Estadística para Ingenieros y Científicos. Madrid: Pearson Educación.

Yesiloglu, S. N. (2019). Investigation of pre-service chemistry teachers’ understanding of radioactive decay: a laboratory modelling activity. Chemistry Education. Research and Practice, 20, 862-872.

Published

— Updated on 2024-12-12

Issue

Section

Essays and Special Topics

How to Cite

Clarifications and didactic recommendations about the statistical and probabilistic nature of the radioactive decay law. (2024). Revista De Enseñanza De La Física, 36(2), 143-160. https://doi.org/10.55767/2451.6007.v36.n2.47478