Methodological strategies for the content oscillations and mechanical waves in Industrial Engineering

Authors

  • María Gabriela Campos Fernández Universidad de Costa Rica, Sede de Occidente. San Ramón, Alajuela, Costa Rica.

DOI:

https://doi.org/10.55767/2451.6007.v33.n2.35185

Keywords:

Meaningful learning, Physics laboratory, Methodological strategies, Oscillations and mechanical waves

Abstract

This work presents the results of an experience in the Laboratorio de Física General II course at the Universidad de Costa Rica, Sede de
Occidente, during the second semester of 2020. A diagnosis was made to a sample of the student population and the teaching staff.
of the Physics Section. Through a survey and an interview, it was inquired about methodological strategies, didactic material and evaluations
used in previous semesters. In addition, information was collected on the training needs and expectations of the students of
the Industrial Engineering career for the course. With the information collected, an educational strategy was developed to implement
under the virtual modality, using the institutional platform Virtual Mediation. The proposal introduces the constructivist approach to
the curricular content "Oscillations and mechanical waves" under the virtual modality, using a sequence of activities that promote
meaningful learning in the student. The educational strategy was validated by an expert and evaluated by the students of the course.
The results obtained show the presence of the constructivist approach in the elaborated proposal.

References

Cabello, J. (2010). Experimentos sencillos de onda estacionaria en tubos. Revista de Enseñanza de la Física, 23(1-2).

Díaz, F. y Hernández, G. (2002). Estrategias docentes para un aprendizaje significativo: una interpretación constructivista. 2da edición. México: McGraw-Hill Interamericana

Davis, N.; McCarty, B.; Shaw, K. y Sidani-Tabbaa, A. (2006). Transitions from objectivism to constructivism in science ed-ucation. International Journal of Science Education, 15(6), 627-636

Espinosa-Ríos, E.; González-López, K. y Hernández-Ramírez, L. (2016). Las prácticas de laboratorio: una estrategia didác-tica en la construcción de conocimiento científico escolar. Entramado, 12(1), 266-281

Holmes, N. G., y Smith, E. M. (2019, Mayo). Operationalizing the AAPT Learning Goals for the Lab. The Physics Teacher, 57(5), 296–299. doi:10.1119/1.5098916

Moreira, M. A. (2014). Enseñanza de la física: aprendizaje significativo, aprendizaje mecánico y criticidad. Revista de En-señanza de la Física, 26(1), 45-52.

Romero, M. y Quesada, A. (2014) Nuevas tecnologías y aprendizaje significativo de las ciencias. Enseñanza de las ciencias, 32(1), 101-105.

Serway, R. y Jewett, J. (2019). Física para ciencias e ingeniería. 10th ed. México: Cengage.

Sutarno, S.; Setiawan, A.; Kaniawati, I. y Suhandi, A. (2019) The development of higher order thinking virtual laboratory on photoelectric effect. Journal of Physics: Conference Series, 1157(3), 032034.

Trumper, R. (2003). The Physics Laboratory – A Historical Overview and Future Perspectives. Science & Education, 12, 645–670

Valdés, P. y Valdés, R. (1999) Características del proceso de enseñanza-aprendizaje de la física en las condiciones con-temporáneas. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 17(3), 521-523

Published

2021-11-05

Issue

Section

Investigación en Enseñanza de la Física

How to Cite

Methodological strategies for the content oscillations and mechanical waves in Industrial Engineering. (2021). Journal of Physics Teaching, 33(2), 123-131. https://doi.org/10.55767/2451.6007.v33.n2.35185