Adaptación argentina del Personality Inventory for DSM-Brief Form (PID-5-BF): Un análisis ESEM

Autores/as

  • Mario Alberto Trógolo Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Psicología, Universidad Nacional de Córdoba, Argentina Autor/a https://orcid.org/0000-0002-2102-4701
  • Silvana Andrea Montes Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Psicología Básica, Aplicada y Tecnología (IPSIBAT), Facultad de Psicología, Universidad Nacional de Mar del Plata, Argentina Autor/a https://orcid.org/0000-0002-1868-7854
  • Rubén Daniel Ledesma Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Psicología Básica, Aplicada y Tecnología (IPSIBAT), Facultad de Psicología, Universidad Nacional de Mar del Plata, Argentina Autor/a https://orcid.org/0000-0002-8598-4680

DOI:

https://doi.org/10.35670/1667-4545.v22.n3.39985

Palabras clave:

PID-5-BF, personalidad, modelo dimensional, modelo de ecuaciones estructurales exploratorio, DSM-5

Resumen

La inclusión del modelo dimensional en el DSM-5 representa un avance conceptual en el campo de los trastornos de personalidad. Este modelo contempla rasgos patológicos de personalidad organizados en cinco grandes áreas: desapego, afectividad negativa, psicoticismo, antagonismo y desinhibición. Para evaluar dicho modelo, se desarrolló el Personality Inventory for DSM-5 (PID-5). El
objetivo de este trabajo fue analizar la estructura interna de la versión breve del instrumento (PID-5-BF) y examinar la invarianza factorial según el sexo y la edad en una muestra de 908 sujetos de Argentina, utilizando modelos de ecuaciones estructurales exploratorios (ESEM). Los resultados indican que un modelo de cinco factores, coherente con la estructura original del instrumento, presenta un excelente ajuste en los datos y es invariante (equivalencia configural, métrica y fuerte) en los grupos estudiados. Se discuten estos resultados y se proponen sugerencias de cara a mejorar la confiabilidad de algunos factores de la escala. 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Aboul-ata, M., & Qonsua, F. (2021). Validity, reliability and hierarchical structure of the PID-5 among Egyptian college students: Using exploratory structural equation modelling. Personality and Mental Health, 15(2), 100-112. doi: 10.1002/pmh.1497

Al-Dajani, N., Gralnick, T. M., & Bagby, R. M. (2016). A psychometric review of the Personality Inventory for DSM-5 (PID-5): Current status and future directions. Journal of Personality Assessment, 98(1), 62-81. doi: 10.1080/00223891.2015.1107572

American Psychiatric Association. (2013a). DSM-5. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: Author.

American Psychiatric Association. (2013b). The Personality Inventory for DSM-5 (PID-5). Washington, DC: Author.

Anderson, J. L., Sellbom, M., & Salekin, R. T. (2018). Utility of the Personality Inventory for DSM-5-Brief Form (PID-5-BF) in the measurement of maladaptive personality and psychopathology. Assessment, 25(5), 596-607. doi: 10.1177/1073191116676889

Asparouhov, T., & Muthén, B. O. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16(3), 397-438. doi:

10.1080/10705510903008204

Bach, B., Maples-Keller, J. L., Bo, S., & Simonsen, E. (2016). The alternative DSM-5 personality disorder traits criterion: A comparative examination of three self-report forms in a Danish population. Personality Disorders: Theory, Research, and Treatment, 7(2), 124-135. doi: 10.1037/per0000162

Bach, B., Sellbom, M., & Simonsen, E. (2018). Personality Inventory for DSM-5 (PID-5) in clinical versus nonclinical individuals: Generalizability of psychometric features. Assessment, 25(7), 815-825. doi: 10.1177/1073191117709070

Beanland, V., Sellbom, M., & Johnson, A. K. (2014). Personality domains and traits that predict self-reported aberrant driving behaviours in a southeastern US university sample. Accident Analysis & Prevention, 72, 184-192. doi: 10.1016/j.aap.2014.06.023

Bethlehem, J. (2010). Selection bias in web surveys. International Statistical Review, 78(2), 161-188. doi: 10.1111/j.1751-5823.2010.00112.x

Bornstein, R. F., & Natoli, A. P. (2019). Clinical utility of categorical and dimensional perspectives on personality pathology: A meta-analytic review. Personality Disorders: Theory, Research, and Treatment, 10(6), 479-490. doi: 10.1037/per0000365

Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111-150. doi: 10.1207/S15327906MBR3601_05

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. En K. Bollen & J. Long (Eds.), Testing Structural Equation Models (pp. 136-162). Newbury Park, CA: Sage.

Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H. L., Israel, S., … & Moffitt, T. E. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119-137. doi: 10.1177/2167702613497473

Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464-504. doi: 10.1080/10705510701301834

Creswell, K. G., Bachrach, R. L., Wright, A. G. C., Pinto, A., & Ansell, E. (2016). Predicting problematic alcohol use with the DSM-5 alternative models of personality pathology. Personality Disorders: Theory, Research, and Treatment, 7(1), 103-111. doi: 10.1037/per0000131

De Clercq, B., De Fruyt, F., De Bolle, M., Van Hiel, A., Markon, K. E., & Krueger, R. F. (2014). The hierarchical structure and construct validity of the PID-5 trait measure in adolescence. Journal of Personality, 82(2), 158-169. doi: 10.1111/jopy.12042

Debast, I., Rossi, G., & Van Alphen, S. P. J. (2018). Age-neutrality of a brief assessment of the section III alternative model for personality disorders in older adults. Assessment, 25(3), 310-323. doi: 10.1177/1073191118754706

Dimitrov, D. M. (2010). Testing for factorial invariance in the context of construct validation. Measurement and Evaluation in Counseling and Development, 43(2), 121-149. doi: 10.1177/0748175610373459

DiStefano, C., Liu, J., Jiang, N., & Shi, D. (2018). Examination of the weighted root mean square residual: Evidence for trustworthiness? Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 453-466. doi: 10.1080/10705511.2017.1390394

Dominguez-Lara, S. A. (2016). Evaluación de la confiabilidad del constructo mediante el Coeficiente H: Breve revisión conceptual y aplicaciones. Psychologia. Avances de la Disciplina, 10(2), 87-94. doi: 10.21500/19002386.2134

Dominguez-Lara, S., & Merino-Soto, C. (2018). Estructura interna del BFI-10P y BFI-15P: Un estudio complementario con enfoque CFA y ESEM. Revista Argentina de Ciencias del Comportamiento, 10(3), 22-34. Recuperado de https://revistas.unc.edu.ar/index.php/racc/index

Esbec, E., & Echeburúa, E. (2011). La reformulación de los trastornos de la personalidad en el DSM-V. Actas Españolas de Psiquiatría, 39(1), 1-11. Recuperado de https://actaspsiquiatria.es/repositorio/13/69/ESP/13-69-ESP-1-11-587990.pdf

Fossati, A., Somma, A., Borroni, S., Markon, K. E., & Krueger, R. F. (2017). The Personality Inventory for DSM-5 Brief Form: Evidence for reliability and construct validity in a sample of community-dwelling Italian adolescents. Assessment, 24(5), 615-631. doi: 10.1177/1073191115621793

Fowler, J. C., Patriquin, M. A., Madan, A., Allen, J. G., Frueh, B. C., & Oldham, J. M. (2017). Incremental validity of the PID-5 in relation to the five factor model and traditional polythetic personality criteria of the DSM-5. International Journal of Methods in Psychiatric Research, 26(2), e1526. doi: 10.1002/mpr.1526

Gomes, C. M. A., & Gjikuria, E. (2017). Comparing the ESEM and CFA approaches to analyze the Big Five factors. Avaliação Psicológica, 16(3), 261-267. doi: 10.15689/ap.2017.1603.12118

Gutiérrez, F., Aluja, A., Peri, J. M., Calvo, N., Ferrer, M., Baillés, E., … & Krueger, R.F. (2017). Psychometric properties of the Spanish PID-5 in a clinical and a community sample. Assessment, 24(3), 326-336. doi: 10.1177/1073191115606518

Hopwood, C. J., & Donnellan, M. B. (2010). How should the internal structure of personality inventories be evaluated? Personality and Social Psychology Review, 14(3), 332-346. doi: 10.1177/1088868310361240

Hopwood, C. J., & Sellbom, M. (2013). Implications of DSM-5 personality traits for forensic psychology. Psychological Injury and Law, 6(4), 314-323. doi: 10.1007/s12207-013-9176-5

Hu, L.-T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453. doi: 10.1037/1082-989X.3.4.424

Krueger, R. F., Derringer, J., Markon, K. E., Watson, D., & Skodol, A. E. (2012). Initial construction of a maladaptive personality trait model and inventory for DSM-5. Psychological Medicine, 42(9), 1879-1890. doi: 10.1017/S0033291711002674

Li, C. H. (2016). Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behavior Research Methods, 48(3), 936-949. doi: 10.3758/s13428-015-0619-7

López-Santín, J. M., Molins-Gálvez, F., & Litvan-Shaw, L. (2013). Trastornos de personalidad en el DSM-5: Una aproximación crítica. Revista de la Asociación Española de Neuropsiquiatría, 33(119), 497-510. doi: 10.4321/S0211-57352013000300003

Manzini, J. L. (2000). Declaración de Helsinki: Principios éticos para la investigación médica sobre sujetos humanos. Acta Bioethica, 6(2), 321-334. doi: 10.4067/S1726-569X2000000200010

Maples, J. L., Carter, N. T., Few, L. R., Crego, C., Gore, W. L., Samuel, D. B., Williamson, R. L., … & Miller, J. D. (2015). Testing whether the DSM-5 personality disorder trait model can be measured with a reduced set of items: An item response theory investigation of the Personality Inventory for DSM-5. Psychological Assessment, 27(4), 1195-1210. doi: 10.1037/pas0000120

Marsh, H. W., Lüdtke, O., Muthén, B., Asparouhov, T., Morin, A. J., Trautwein, U., & Nagengast, B. (2010). A new look at the big five factor structure through exploratory structural equation modeling. Psychological Assessment, 22(3), 471-491. doi: 10.1037/a0019227

Marsh, H. W., Morin, A. J., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10, 85-110. doi: 10.1146/annurev-clinpsy-032813-153700

Miller, J. D., Crowe, M., Weiss, B., Maples-Keller, J. L., & Lynam, D. R. (2017). Using online, crowdsourcing platforms for data collection in personality disorder research: The example of Amazon’s Mechanical Turk. Personality Disorders: Theory, Research, and Treatment, 8(1), 26-34. doi: 10.1037/per0000191

Montes, S. A., & Sánchez, R. O. (2019). El factor p. ¿La estructura subyacente a la psicopatología? Revista Evaluar, 19(3), 20-41. doi: 10.35670/1667-4545.v19.n3.26774

Morey, L. C., Good, E. W., & Hopwood, C. J. (2022). Global personality dysfunction and the relationship of pathological and normal trait domains in the DSM-5 alternative model for personality disorders. Journal of Personality, 90(1), 34-46. doi: 10.1111/jopy.12560

Morin, A. J. S., Arens, A. K., & Marsh, H. W. (2016). A bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. Structural Equation Modeling: A Multidisciplinary Journal, 23(1), 116-139. doi: 10.1080/10705511.2014.961800

Navarro-González, D., Lorenzo-Seva, U., & Vigil-Colet, A. (2016). How response bias affects the factorial structure of personality self-reports. Psicothema, 28(4), 465-470. doi: 10.7334/psicothema2016.113

Pires, R., Sousa-Ferreira, A., Guedes, D., Gonçalves, B., & Henriques-Calado, J. (2018). Estudo das propriedades psicométricas- Formas longa, reduzida e breveda versão portuguesa do Inventário da Personalidade para o DSM-5 (PID-5). Revista Iberoamericana de Diagnóstico y Evaluación – e Avaliação Psicológica, 47(2), 197-212. doi: 10.21865/RIDEP47.2.14

Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Developmental Review, 41, 71-90. doi: 10.1016/j.dr.2016.06.004

Rojas, L., Rojas, G., & Brizuela, A. (2018). The use of measurement invariance with dichotomous variables as evidence of validity. Revista Evaluar, 18(2), 45-58. doi: 10.35670/1667-4545.v18.n2.20807

Romero E., & Alonso, C. (2019). Maladaptative personality traits in adolescence: Behavioural, emotional and motivational correlates of the PID-5-BF scales. Psicothema, 31(3), 263-270. doi: 10.7334/psicothema2019.86

Russell, T. D., & King, A. R. (2020). Distrustful, conventional, entitled, and dysregulated: PID-5 personality facets predict hostile masculinity and sexual violence in community men. Journal of Interpersonal Violence, 35(3-4), 707-730. doi: 10.1177/0886260517689887

Russell, T. D., Pocknell, V., & King, A. R. (2017). Lesbians and bisexual women and men have higher scores on the Personality Inventory for the DSM-5 (PID 5) than heterosexual counterparts. Personality and Individual Differences, 110, 119-124. doi: 10.1016/j.paid.2017.01.039

Sánchez, R. O., Montes, S. A., & Somerstein, L. D. (2020). Inventario de Personalidad para el DSM-5: Propiedades psicométricas en población argentina. Estudio preliminar. Interdisciplinaria, 37(1), 55-76. doi: 10.16888/interd.2020.37.1.4

Suzuki, T., Samuel, D. B., Pahlen, S., & Krueger, R. F. (2015). DSM-5 alternative personality disorder model traits as maladaptive extreme variants of the five-factor model: An item-response theory analysis. Journal of Abnormal Psychology, 124(2), 343-354. doi: 10.1037/abn0000035

Tomás, J. M., Galiana, L., Hontangas, P., Oliver, A., & Sancho, P. (2013). Evidencia acumulada sobre los efectos de método asociados a ítems invertidos. Psicológica, 34(2), 365-381. Recuperado de https://www.uv.es/psicologica/articulos2.13/13Tomas.pdf

Trull, T. J., & Durrett, C. A. (2005). Categorical and dimensional models of personality disorder. Annual Review of Clinical Psychology, 1, 355-380. doi: 10.1146/annurev.clinpsy.1.102803.144009

Vergauwe, J., Wille, B., De Caluwé, E., & De Fruyt, F. (2022). Passion for work: Relationships with general

and maladaptive personality traits and work-related

outcomes. Personality and Individual Differences,

185, 111306. doi: 10.1016/j.paid.2021.111306

Widiger, T. A., & Trull, T. J. (2007). Plate tectonics in the classification of personality disorder: Shifting to a dimensional model. American Psychologist, 62(2), 71-83. doi: 10.1037/0003-066X.62.2.71

Zimmermann, J., Kerber, A., Rek, K., Hopwood, C. J., & Krueger, R. F. (2019). A brief but comprehensive review of research on the alternative DSM-5 model for personality disorders. Current Psychiatry Reports, 21, 92. doi: 10.1007/s11920-019-1079-z

Winter, T., Riordan, B. C., Pakpour, A. H., Griffiths, M. D., Mason, A., Poulgrain, J. W., & Scarf, D. (2020). Evaluation of the English version of the Fear of COVID-19 Scale and its relationship with behavior change and political Beliefs. International Journal of Mental Health and Addiction. [Advance online publication]. doi: 10.1007/s11469-020-00342-9

Descargas

Publicado

2023-01-01

Número

Sección

Investigaciones originales

Cómo citar

Adaptación argentina del Personality Inventory for DSM-Brief Form (PID-5-BF): Un análisis ESEM. (2023). Revista Evaluar, 22(3), 20-34. https://doi.org/10.35670/1667-4545.v22.n3.39985