Other ways of understanding Cohen’s d

Authors

  • José Ventura-León Universidad Privada del Norte Author

DOI:

https://doi.org/10.35670/1667-4545.v18.n3.22305

Keywords:

d de Cohen, tamaño del efecto, medidas alternativas, probabilidad de superioridad, coeficiente de superposición

Abstract

Cohen’s d (d) is quite a used measure of the size of the effect and its report is compulsory necessary in sta-tistical analyzes. Nevertheless, researchers report that the difference between two distributions is small (d > .20). However, the interpretation of this coefficient is not clear in psychology studies. In this sense, it is necessary to con-vert the d into a probability measure to facilitate the inter-pretation of the distributions that are object of comparison. Among the most frequent measures are: Cohen’s U3, the superposition coefficient (OVL), the probability of superi-ority (PS) and the number needed to treat (NNT), which can be considered as alternative measures of the magnitude of a difference. For such purposes, R codes that can be easi-ly used by the researchers are provided, as well as a table showing the modifications of the alternative measures be-fore the increase in the size of the effect.

Downloads

Download data is not yet available.

Author Biography

  • José Ventura-León, Universidad Privada del Norte
    Docente investigador de la Facultad de Salud, sede Breña-Lima.

References

Al-Saleh, M. F., & Samawi, H. M. (2007). Interference on overlapping coefficients in two exponential populations. Journal of Modern Applied Statistical Methods, 6(2), 503-516. doi: 10.22237/jmasm/1193890440

American Psychological Association (2010). Publication Manual of the American Psychological Association. Washington, DC: American Psychological Association.

Baguley, T. (2009). Standardized or simple effect size: What should be reported? British Journal of Psychology, 100(3), 603-617. doi: 10.1348/000712608X377117

Castillo, R. (2014). Reporte del tamaño del efecto en los artículos de tres revistas de psicología peruanas en los años 2008 al 2012 (Tesis de pregrado). Universidad Mayor de San Marcos. Lima, Perú.

Cárdenas-Castro, J. M., & Arancibia, H. (2014). Potencia estadística y cálculo del tamaño del efecto en G* Power: Complementos a las pruebas de significación estadística y su aplicación en psicología. Salud & Sociedad, 5(2), 210-244. doi: 10.22199/s07187475.2014.0002.00006

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2a ed.). Hillsdale, NJ: Erlbaum. doi: 10.4324/9780203771587

Cohen, J. (1992). Cosas que he aprendido (hasta ahora). Anales de Psicología, 8(1-2), 3-17. Recuperado de http://revistas.um.es/analesps

Ellis, P. D. (2010). The essential guide to effect sizes. Statistical power, meta-analysis, and the interpretation of research results. Cambridge, UK: Cambridge University. doi: 10.1017/cbo9780511761676

Furukawa, T. A., & Leucht, S. (2011). How to obtain NNT from Cohen’s d: Comparison of two methods. PloS One, 6(4), 1-5. doi: 10.1371/journal.pone.0019070

García, J., Ortega, E., & De la Fuente, L. (2008). Tamaño del efecto en las revistas de Psicología indizadas en Redalyc. Informes Psicológicos, 10(11), 173-188.

Gurnsey, R. (2017). Statistics for research in Psychology: A modern approach using estimation. Thousand Oaks, CA: SAGE.

Ho, Y. S., & Hartley, J. (2016). Classic articles in psychology in the Science Citation Index Expanded: A bibliometric analysis. British Journal of Psychology, 107(4), 768-780. doi: 10.1111/bjop.12163

Magnusson, K. (3 de febrero de 2014). Interpreting Cohen’s d effect size: An interactive visualization. Recuperado de http://rpsychologist.com/d3/cohend

McGough, J. J., & Faraone, S. V. (2009). Estimating the size of treatment effects: Moving beyond P values. Psychiatry (Edgmont), 6(10), 21-29. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/journals/901

McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. Psychological Bulletin, 111(2), 361-365. doi: 10.1037/0033-2909.111.2.361

Reiser, B., & Faraggi, D. (1999). Confidence intervals for the overlapping coefficient: The normal equal variance case. Journal of the Royal Statistical Society: Series D (The Statistician), 48(3), 413-418. doi: 10.1111/1467-9884.00199

Scholten, R. J., de Beurs, E., & Bouter, L. M. (1999). From effect size into number needed to treat. The Lancet, 354(9178), 598. doi: 10.1016/S0140-6736(05)77952-6

Downloads

Published

2018-12-04

Issue

Section

Artículos metodológicos

How to Cite