Confirmatory Factor Analysis of IPAM in Third-Grade Students
DOI:
https://doi.org/10.35670/1667-4545.v17.n2.18723Keywords:
sentido numérico, educación primaria, matemáticas, análisis factorial confirmatorio, medida basada en el currículoAbstract
This study has been designed to analyse the factorial structure of IPAM using Confirmatory Factorial Analysis (CFA) techniques. For this purpose, a longitudinal study was carried out with a sample of 234 third-grade elementary students from the Canary Islands, to whom the instrument IPAM (Mathematics Learning Progress Indicators) was administered. IPAM is a curriculum-based measurement (CBM) instrument for universal screening and mathemat-ics learning progress monitoring in elementary grades. It is composed by three parallel measurements (A, B and C) that aim to measure the same latent structure (i.e., number sense) through the assessment of five indicators of basic early math skills using fluency tasks (i.e., magnitude com-parison, two-digit operations, missing number, one-digit operations, position value). IPAM was administered three times throughout the school year (i.e., fall, winter, and spring). The model tested showed a good fit at the different moments of measurement.
Downloads
References
Andrews, P., & Sayers, J. (2015). Identifying opportunities for grade one children to acquire foundational number sense: Developing a framework for cross cultural classroom analyses. Early Childhood Education Journal, 43(4), 257-267. doi: 10.1007/s10643-014-0653-6
Cragg, L., & Gilmore, C. (2014). Skills underlying ma-thematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63-68. doi: 10.1016/j.tine.2013.12.001
Dehaene, S. (2009). Origins of mathematical intui-tions. The case of arithmetic. Annals of the New York Academy of Sciences, 1156(1), 232-259. doi: 10.1111/j.1749-6632.2009.04469.x
De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103(4), 469-479. doi: 10.1016/j.jecp.2009.01.010
Dyson, N. I., Jordan, N. C., & Glutting, J. (2011). A number sense intervention for low-income kindergart-ners at risk for mathematics difficulties. Journal of Learning Disabilities, 46(2), 166-181. doi: 10.1177/0022219411410233
Foegen, A., Jiban, C., & Deno, S. (2007). Progress monitoring measures in mathematics. A review of the literature. The Journal of Special Education, 41(2), 121-139. doi: 10.1177/00224669070410020101
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18, 39-50. doi: 10.2307/3151312
Fuchs, L. S., Fuchs, D., Compton, D. L., Powel, S. R., Seethaler, P. M., Capizzi, A. M. ... Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29-43. doi: 10.1037/0022-0663.98.1.29
Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23-27. doi: 10.1177/0963721412469398
Gersten, R., Clarke, B., Jordan, N. C., Newman-Gonchar, R., Haymond, K., & Wilkins, C. (2012). Universal screening in mathematics for the primary grades: Beginnings of a research base. Council for Exceptional Children, 78(4), 423-445. doi: 10.1177/001440291207800403
Hernández, J. A., & Betancort, M. (2016). ULLRTool-box. Disponible en https://sites.google.com/site/ullrtoolbox
Hassinger-Das, B., Jordan, N. C., Glutting, J., Irwin, C., & Dyson, N. (2014). Domain-general mediators of the relation between kindergarten number sense and first-grade mathematics achievement. Journal of Experimental Child Psychology, 118, 78-92. doi: 10.1016/j.jecp.2013.09.008
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29. doi: 10.1016/j.jecp.2008.04.001
Jiménez, J. E., & De León, S. (2016). Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM). Universidad de La Laguna. Manuscrito sin publicar.
Jiménez, J. E., & De León, S. (2017). Análisis factorial confirmatorio de Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM) en escolares de primer curso de primaria. European Journal of Investigation in Health, Psychology and Education, 7, 31-45. Recuperado de https://formacionasunivep.com/ejih-pe/index.php/ejihpe
Jitendra, A. K., Dupuis, D. N., & Zaslofsky, A. F. (2014). Curriculum-based measurement and standards-based mathematics: Monitoring the arithmetic word problem-solving performance of third-grade students at risk for mathematics difficulties. Learning Disability Quarterly, 37(4), 241-251. doi: 10.1177/0731948713516766
Jordan, N. C., Gutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82-88. doi: 10.1016/j.lindif.2009.07.004
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850-867. doi: 10.1037/a0014939
Jordan, N. C., & Levine, S. C. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews, 15(1), 60-68. doi: 10.1002/ddrr.46
Jöreskog, K., & Sörbom, D. (1996-2001). LISREL 8: User’s Reference Guide. Illinois: Scientific Software International, Lincolnwood.
Kim, D., Shin, J., & Lee, K. (2013). Exploring latent class based on growth rates in number sense ability. Asia Pacific Education Review, 14(3), 445-453, doi: 10.1007/s12564-013-9274-9
Kline, R. B. (2005). Principles and practice of structural equation modeling (2ª ed.). Nueva York, NY: Guilford Press.
Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95-103. doi: 10.1016/j.learninstruc.2012.12.001
LeFevre, J., Berrigan, L., Vendetti, C., Kamawar, D., Bisanz, J., Skwarchuck, S. ... Smith-Chant, B. (2013). The role of executive attention in the acquisition of ma-thematical skills for children in grades 2 through 4. Journal of Experimental Child Psychology, 114(2), 243-261. doi: 10.1016/j.jecp.2012.10.005
Lemaire, P., & Lecacheur, M. (2011). Age-related changes in children’s executive functions and strategy selection: A study in computational estimation. Cognitive Development, 26, 282-294. doi: 10.1016/j.cogdev.2011.01.002
Lembke, E., & Foegen, A. (2009). Identifying early numeracy indicators for kindergarten and first-grade students. Learning Disabilities Research & Practice, 24(1), 12-20. doi: 10.1111/j.1540-5826.2008.01273.x
Libertus, M. E., Fiegenson, L., & Halberda, J. (2011). Preschool acuity of the approximate num-ber system correlates with school math ability. Developmental Science, 14(6), 1292-1300. doi: 10.1111/j.1467-7687.2011.01080.x
Libertus, M. E., Fiegenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126-133. doi: 10.1016/j.lindif.2013.02.001
Lucangeli, D., Tressoldi, P. E., Bendotti, M., Bonanomi, M., & Siegel, L. S. (2003). Effective strategies for mental and written arithmetic calculation from the third to the fifth grade. Educational Psychology, 23(5), 507-520. doi: 10.1080/0144341032000123769
Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256-261. doi: 10.1016/j.cognition.2011.07.009
Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714-726. doi: 10.1111/desc.12152
Namkung, J. M., & Fuchs, L. S. (2016). Cognitive predictors of calculations and number line estimation with whole numbers and fractions among at-risk students. Journal of Educational Psychology, 108(2), 214-228. doi: 10.1037/edu0000055
National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: NCATE.
National Mathematics Advisory Panel (2008). Foundations for Success: The Final Report of the National Mathematics Advisory Panel. Washington, DC: Department of Education.
Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investi-gation of underlying mechanism. Cognition, 133(1), 188-200. doi: 10.1016/j.cognition.2014.06.011
Peng, P., Namkung, J. M., Fuchs, D., Fuchs, L. S., Patton, S., Yen, L. ... Hamlett, C. (2016). A longitudinal study on predictors of early calculation development among young children at risk for learning difficulties. Journal of Experimental Child Psychology, 152, 221-241. doi: 10.1016/j.jecp.2016.07.017
Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542-551. doi: 10.1016/j.tics.2010.09.008
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de http://www.R-project.org
Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418-431. doi: 10.1016/j.jecp.2012.10.012
Sayers, J., & Andrews, P. (2015). Foundational number sense: Summarising the development of an analyti-cal framework. En K. Krainer & N. Vondrová (Eds.), Ninth Congress of the European Society for Research in Mathematics Education (CERME9) (pp. 361-337). Praga: Charles University in Prague, Faculty of Education.
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J. ... De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), 1-16. doi: 10.1111/desc.12372
Siegler, R., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. Advances in Child Development and Behavior, 33, 1-42. doi: 10.1016/S0065-2407(05)80003-5
Sisco-Taylor, D., Fung, W., & Swanson, H. L. (2015). Do curriculum-based measures predict performance on word-problem-solving measures? Assessment for Effective Intervention, 40(3), 131-142. doi: 10.1177/1534508414556504
Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Science, 110(45), 18116-18120. doi: 10.1073/pnas.1302751110
Toll, S. W. M., Kroesbergen, E. H., & Van Luit, J. E. H. (2016). Visual working memory and number sense: Testing the double deficit hypothesis in mathematics. British Journal of Educational Psychology, 86(3), 429-445. doi: 10.1111/bjep.12116
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Juan E. Jiménez
This work is licensed under a Creative Commons Attribution 4.0 International License.
Revista Evaluar aplica la Licencia Internacional de Atribuciones Comunes Creativas (Creative Commons Attribution License, CCAL). Bajo esta licencia, los autores retienen la propiedad de copyright de los artículos pero permiten que, sin que medie permiso de autor o editor, cualquier persona descargue y distribuya los artículos publicados en Evaluar. La única condición es que siempre y en todos los casos se cite a los autores y a la fuente original de publicación (i.e. Evaluar). El envío de artículos a Evaluar y la lectura de los mismos es totalmente gratuito.