Análisis Factorial Confirmatorio del IPAM en Escolares de Tercer Curso de Primaria

Autores/as

DOI:

https://doi.org/10.35670/1667-4545.v17.n2.18723

Palabras clave:

sentido numérico, educación primaria, matemáticas, análisis factorial confirmatorio, medida basada en el currículo

Resumen

Este estudio pretende evaluar la estructura factorial del instrumento Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM) mediante la técnica de análisis factorial confirmatorio (AFC). Con este fin, se ha llevado a cabo un estudio longitudinal con una muestra de 234 alumnos de tercer curso de educación primaria de las Islas Canarias, a los que se administró el instrumento IPAM, un instrumento de medición basado en el currículo (CBM, por sus siglas en inglés, curriculum-based measurement), y cuyo principal objetivo es el cribado universal y la evaluación del progreso en el aprendizaje en matemáticas del alumnado de educación primaria. Este instrumento está compuesto por tres medidas paralelas (A, B y C), que pretenden medir una misma estructura latente, el sentido numérico, por medio de la resolución de cinco tareas de fluidez (comparación numérica, operaciones de dos dígitos, series numéricas, operaciones de un dígito y valor de posición). El IPAM fue aplicado en tres momentos diferentes a lo largo del año escolar (i.e., otoño, invierno y primavera) y los resultados del AFC mostraron un buen ajuste del modelo propuesto en los distintos momentos de medida.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Juan E. Jiménez, Universidad de La Laguna.

    Developmental and Educational Psychology. Professor of Learning Disabilities.

  • Sara C. de León, Universidad de La Laguna.

    Developmental and Educational Psychology. Lecturer.

Referencias

Andrews, P., & Sayers, J. (2015). Identifying opportunities for grade one children to acquire foundational number sense: Developing a framework for cross cultural classroom analyses. Early Childhood Education Journal, 43(4), 257-267. doi: 10.1007/s10643-014-0653-6

Cragg, L., & Gilmore, C. (2014). Skills underlying ma-thematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63-68. doi: 10.1016/j.tine.2013.12.001

Dehaene, S. (2009). Origins of mathematical intui-tions. The case of arithmetic. Annals of the New York Academy of Sciences, 1156(1), 232-259. doi: 10.1111/j.1749-6632.2009.04469.x

De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103(4), 469-479. doi: 10.1016/j.jecp.2009.01.010

Dyson, N. I., Jordan, N. C., & Glutting, J. (2011). A number sense intervention for low-income kindergart-ners at risk for mathematics difficulties. Journal of Learning Disabilities, 46(2), 166-181. doi: 10.1177/0022219411410233

Foegen, A., Jiban, C., & Deno, S. (2007). Progress monitoring measures in mathematics. A review of the literature. The Journal of Special Education, 41(2), 121-139. doi: 10.1177/00224669070410020101

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18, 39-50. doi: 10.2307/3151312

Fuchs, L. S., Fuchs, D., Compton, D. L., Powel, S. R., Seethaler, P. M., Capizzi, A. M. ... Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29-43. doi: 10.1037/0022-0663.98.1.29

Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23-27. doi: 10.1177/0963721412469398

Gersten, R., Clarke, B., Jordan, N. C., Newman-Gonchar, R., Haymond, K., & Wilkins, C. (2012). Universal screening in mathematics for the primary grades: Beginnings of a research base. Council for Exceptional Children, 78(4), 423-445. doi: 10.1177/001440291207800403

Hernández, J. A., & Betancort, M. (2016). ULLRTool-box. Disponible en https://sites.google.com/site/ullrtoolbox

Hassinger-Das, B., Jordan, N. C., Glutting, J., Irwin, C., & Dyson, N. (2014). Domain-general mediators of the relation between kindergarten number sense and first-grade mathematics achievement. Journal of Experimental Child Psychology, 118, 78-92. doi: 10.1016/j.jecp.2013.09.008

Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29. doi: 10.1016/j.jecp.2008.04.001

Jiménez, J. E., & De León, S. (2016). Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM). Universidad de La Laguna. Manuscrito sin publicar.

Jiménez, J. E., & De León, S. (2017). Análisis factorial confirmatorio de Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM) en escolares de primer curso de primaria. European Journal of Investigation in Health, Psychology and Education, 7, 31-45. Recuperado de https://formacionasunivep.com/ejih-pe/index.php/ejihpe

Jitendra, A. K., Dupuis, D. N., & Zaslofsky, A. F. (2014). Curriculum-based measurement and standards-based mathematics: Monitoring the arithmetic word problem-solving performance of third-grade students at risk for mathematics difficulties. Learning Disability Quarterly, 37(4), 241-251. doi: 10.1177/0731948713516766

Jordan, N. C., Gutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82-88. doi: 10.1016/j.lindif.2009.07.004

Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850-867. doi: 10.1037/a0014939

Jordan, N. C., & Levine, S. C. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews, 15(1), 60-68. doi: 10.1002/ddrr.46

Jöreskog, K., & Sörbom, D. (1996-2001). LISREL 8: User’s Reference Guide. Illinois: Scientific Software International, Lincolnwood.

Kim, D., Shin, J., & Lee, K. (2013). Exploring latent class based on growth rates in number sense ability. Asia Pacific Education Review, 14(3), 445-453, doi: 10.1007/s12564-013-9274-9

Kline, R. B. (2005). Principles and practice of structural equation modeling (2ª ed.). Nueva York, NY: Guilford Press.

Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95-103. doi: 10.1016/j.learninstruc.2012.12.001

LeFevre, J., Berrigan, L., Vendetti, C., Kamawar, D., Bisanz, J., Skwarchuck, S. ... Smith-Chant, B. (2013). The role of executive attention in the acquisition of ma-thematical skills for children in grades 2 through 4. Journal of Experimental Child Psychology, 114(2), 243-261. doi: 10.1016/j.jecp.2012.10.005

Lemaire, P., & Lecacheur, M. (2011). Age-related changes in children’s executive functions and strategy selection: A study in computational estimation. Cognitive Development, 26, 282-294. doi: 10.1016/j.cogdev.2011.01.002

Lembke, E., & Foegen, A. (2009). Identifying early numeracy indicators for kindergarten and first-grade students. Learning Disabilities Research & Practice, 24(1), 12-20. doi: 10.1111/j.1540-5826.2008.01273.x

Libertus, M. E., Fiegenson, L., & Halberda, J. (2011). Preschool acuity of the approximate num-ber system correlates with school math ability. Developmental Science, 14(6), 1292-1300. doi: 10.1111/j.1467-7687.2011.01080.x

Libertus, M. E., Fiegenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126-133. doi: 10.1016/j.lindif.2013.02.001

Lucangeli, D., Tressoldi, P. E., Bendotti, M., Bonanomi, M., & Siegel, L. S. (2003). Effective strategies for mental and written arithmetic calculation from the third to the fifth grade. Educational Psychology, 23(5), 507-520. doi: 10.1080/0144341032000123769

Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256-261. doi: 10.1016/j.cognition.2011.07.009

Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714-726. doi: 10.1111/desc.12152

Namkung, J. M., & Fuchs, L. S. (2016). Cognitive predictors of calculations and number line estimation with whole numbers and fractions among at-risk students. Journal of Educational Psychology, 108(2), 214-228. doi: 10.1037/edu0000055

National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: NCATE.

National Mathematics Advisory Panel (2008). Foundations for Success: The Final Report of the National Mathematics Advisory Panel. Washington, DC: Department of Education.

Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investi-gation of underlying mechanism. Cognition, 133(1), 188-200. doi: 10.1016/j.cognition.2014.06.011

Peng, P., Namkung, J. M., Fuchs, D., Fuchs, L. S., Patton, S., Yen, L. ... Hamlett, C. (2016). A longitudinal study on predictors of early calculation development among young children at risk for learning difficulties. Journal of Experimental Child Psychology, 152, 221-241. doi: 10.1016/j.jecp.2016.07.017

Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542-551. doi: 10.1016/j.tics.2010.09.008

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de http://www.R-project.org

Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418-431. doi: 10.1016/j.jecp.2012.10.012

Sayers, J., & Andrews, P. (2015). Foundational number sense: Summarising the development of an analyti-cal framework. En K. Krainer & N. Vondrová (Eds.), Ninth Congress of the European Society for Research in Mathematics Education (CERME9) (pp. 361-337). Praga: Charles University in Prague, Faculty of Education.

Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J. ... De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), 1-16. doi: 10.1111/desc.12372

Siegler, R., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. Advances in Child Development and Behavior, 33, 1-42. doi: 10.1016/S0065-2407(05)80003-5

Sisco-Taylor, D., Fung, W., & Swanson, H. L. (2015). Do curriculum-based measures predict performance on word-problem-solving measures? Assessment for Effective Intervention, 40(3), 131-142. doi: 10.1177/1534508414556504

Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Science, 110(45), 18116-18120. doi: 10.1073/pnas.1302751110

Toll, S. W. M., Kroesbergen, E. H., & Van Luit, J. E. H. (2016). Visual working memory and number sense: Testing the double deficit hypothesis in mathematics. British Journal of Educational Psychology, 86(3), 429-445. doi: 10.1111/bjep.12116

Descargas

Publicado

2017-12-01

Número

Sección

Investigaciones originales

Cómo citar

Análisis Factorial Confirmatorio del IPAM en Escolares de Tercer Curso de Primaria. (2017). Revista Evaluar, 17(2). https://doi.org/10.35670/1667-4545.v17.n2.18723