Particulate bone matrix usage for alveolar bone conservation

Autores/as

  • Sebastián Fontana Chair of Histology. Dentistry Faculty. National University of Córdoba.
  • Luis Plavnik Science and Technology Area. CREO Foundation.
  • Miguel Filippetti Human Tissue Processing Plant. UNC-Biotecnia. National University of Córdoba
  • Alicia Inés Malberti Cátedra de Histología. Departamento de Biología Oral, Facultad de Odontología. Universidad Nacional de Córdoba.

DOI:

https://doi.org/10.31053/1853.0605.v70.n3.20186

Palabras clave:

bone transplantation, alveolar ridges preservation, post-extraction alveoli, osteoconductive materials

Resumen

Different filling materials have been used in an attempt to repair bone loss situations. Objective: The present study aimed to examine the effect of a bone matrix in post-extraction remodelling of the alveolar bone, and to perform a histomorphometric analysis of the residual alveolar ridges in Wistar rats.

Material and Methods: Both rat first lower molars were extracted and the right alveoli were filled with particles of a bone matrix with mineral components (MO-UNC) (experimental group, EG). The left alveoli were used as a control group (CG). The animals were sacrificed at 0 hrs, 15, 30 and 60 days after extraction, and the samples were processed. Histological sections were made at the level of the mesial alveolus of the first lower molar.
Repair of the alveoli was histologically evaluated and a histomorphometric study of total alveolar volume (TAV), height of the buccal plate (Bh), height of the lingual plate (Lh) and percentage of osseointegration (OI) of the particles was performed to compare the residual ridges of CG with those of the EG. Statistical analysis of the data was performed.
Results: In the cases of the experimental group, newly-formed bone tissue was identified around the MO-UNC particles (osseointegration). Histomorphometric data indicate that, at 60 days post-extraction, TAV was significantly greater for EG when compared with CG (p<0.05) and the percentage of osseointegration of the particles increased as a function of time (57.6 %, 90.5% y 95.5%, for EG at 15, 30 y 60 days respectively). Conclusions: The bone matrix (MO-UNC) evaluated in this study is an osteoconductive material that prevents the collapse of post-extraction alveolar bone.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

-Guglielmotti MB, Cabrini RL. Alveolar wound healing and ridge remodeling after tooth extraction in the rat: a histologic, radiographic, and histometric study. J Oral Maxillofac Surg. 1985; 43:359-64.

-Araújo MG, Lindhe J.Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol. 2005; 32:212-18.

-Cardaropoli G, Araújo M, Lindhe J. Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs. J Clin Periodontol. 2003; 30:809-18.

-Araújo M, Linder E, Wennström J, Lindhe J. The influence of Bio-Oss Collagen on healing of an extraction socket: an experimental study in the dog. Int J Periodontics Restorative Dent. 2008;28:123-35.

-Heberer S, Al-Chawaf B, Hildebrand D, Nelson JJ, Nelson K. Histomorphometric analysis of extraction sockets augmented with Bio-Oss Collagen after a 6-week healing period: a prospective study. Clin Oral Implants Res. 2008; 19:1219-25.

-Cooper L. Biologic Determinants of bone formation for osseointegration: Clues for future clinical improvements. J Prosthet Dent. 1998; 80:439-49.

-Marx RE, Carlson ER, Eichstaedt RM, et al. Platelet-rich plasma. Growth factor enhancement for bone graft. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998; 85:638-46.

-Misch CE, Dietsch F. Bone grafting materials in implant dentistry. Implant Dent. 2003; 2:158-67.

-Caneva M, Botticelli D, Morelli F, Cesaretti G, Beolchini M, Lang NP. Alveolar process preservation at implants installed immediately into extraction sockets using deproteinized bovine bone mineral. An experimental study in dogs. Clin Oral Implants Res. 2012; 23:789-96.

-Urist MR. Bone: formation by autoinduction. Clin Orthop Relat Res. 2002; 395:4-10.

-Fontana S, Olmedo D, Linares J, Guglielmotti MB, Crosa ME. Effect of Platelet Rich Plasma on the Peri-implant Bone Response. An Experimental Study. Implant Dent. 2004; 13:73-8.

-Becker W, Becker BE, Caffesse R. A comparison of demineralized freeze-dried bone and autologous bone to induce bone formation in human extraction sockets. J Periodontol. 1994; 65:1128-33.

-Schwartz Z, Mellonig JT, Carnes DL y col. Ability of commercial demineralized freezedried bone allograft to induce new bone formation. J Periodontol. 1996; 67: 918-926.

-Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants. 2009; 24:237-59.

-von Arx T, Häfliger J, Chappuis V.Neurosensory disturbances following bone harvesting in the symphysis: a prospective clinical study. Clin Oral Implants Res. 2005 Aug; 16(4):432-9.

-Zárate-Kalfópulos B, Reyes Sánchez A. Injertos óseos en cirugía ortopédica. Cir Ciruj. 2006; 74:217-22.

-Guglielmotti MB, Alonso ME, Itoiz ME, Cabrini RL. Increased osteogenesis in alveolar wound healing elicited by demineralised bone powder. J Oral Maxillofac Surg. 1990; 48:487-90.

-Carmagnola D, Adriaens P, Berglundh T. Healing of human extraction sockets filled with Bio-Oss. Clin Oral Implants Res. 2003;14:137- 43.

-Fontana S, Plavnik LM, Renou SJ, González de Crosa ME. Bone substitute in the repair of the post-extraction alveolus. Acta Odontol Latinoam. 2010;23:42-6.

-Shapoff CA, Bowers GM, Levy B, Mellonig JT, Yukna RA. The effect of particle size on the osteogenic activity of composite grafts of allogeneic freeze-dried bone and autogenous marrow. J Periodontol. 1980;5 1:625-30.

-Piattelli A, Scarano A, Corigliano M, Piatelli M. Comparison of regeneration with the use of mineralized and demineralised freeze dried bone allografts: a histological and histochemical study in man. Biomaterials. 1996; 17:1127-1131.

-Chiapasco M, Zaniboni M, Boisco M. Augmentation procedures for the rehabilitation of deficient edentulous ridges with oral implants. Clin Oral Implants Res. 2006;17:136-59.

-Horváth A, Mardas N, Mezzomo LA, Needleman IG, Donos N. Alveolar ridge preser-vation. A systematic review. Clin Oral Investig. 2013; 17(2):341-63.

-Glowacki J. A review of osteoconductive testing method and sterilization processes for demineralised bone. Cell and Tissue Banking 2005; 63-12.

-Araújo M, Linder E, Lindhe J. Effect of a xenograft on early bone formation in extraction sockets: an experimental study in dog. Clin Oral Implants Res. 2009; 20:1-6.

-Calixto RF, Teófilo JM, Brentegani LG, Lamano-Carvalho TL. Grafting of tooth extraction socket with inorganic bovine bone or bioactive glass particles: comparative histometric study in rats. Implant Dent. 2007; 16(3):260-9.

Descargas

Publicado

2013-09-07

Cómo citar

1.
Fontana S, Plavnik L, Filippetti M, Malberti AI. Particulate bone matrix usage for alveolar bone conservation. Rev Fac Cien Med Univ Nac Cordoba [Internet]. 7 de septiembre de 2013 [citado 25 de abril de 2024];70(3):115-22. Disponible en: https://revistas.unc.edu.ar/index.php/med/article/view/20186

Número

Sección

Artículos Originales