Mecanismos moleculares en metaplasia osteocartilaginosa vascular: revisión sistemática

Autores/as

DOI:

https://doi.org/10.31053/1853.0605.v73.n4.14567

Palabras clave:

metaplasia, condrogénesis, osteogénesis, aterosclerosis, calcificación vascular, antioxidantes

Resumen

Introducción: Las metaplasias cartilaginosas y óseas que ocurren tanto en el corazón como en los vasos sanguíneos, son consecuencia de factores de riesgo o enfermedades crónicas que gradualmente afectan negativamente el desempeño de una persona en la sociedad y que corresponden a signos clínicos reversibles en estadíos tempranos o intermedios de las alteraciones. Objetivo: Establecer la manera en que los mecanismos moleculares fundamentan los crecientes cambios metaplásicos vasculares y los posibles aspectos de tratamiento y prevención. Materiales y métodos: Se realizó una revisión sistemática mediante la búsqueda de artículos indexados en las bases de datos PubMed, Scopus y Science Direct entre 1995 a 2015. Los descriptores MeSH utilizados fueron metaplasia and vascular calcification, a los que se asociaron los términos de molecular mechanisms, condrogenic and osteogenic. Resultados y discusión: Múltiples factores influyen en el cambio metaplásico, en especial los pro-inflamatorios asociados a la oxidación vascular y la presencia de radicales libres, cuyo desarrollo es reversible mediante el tratamiento con antioxidantes y las modificaciones en el estilo de vida, así como la prevención secundaria al existir un diagnóstico de enfermedad crónica degenerativa.  Conclusión: La literatura evidencia que los factores que reduzcan el estrés oxidativo tisular y que promuevan el mantenimiento del fenotipo vascular son protectores y/o reductores de las formaciones metaplásicas osteocartilaginosas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Doris Haydee Rosero Salazar, Universidad Icesi Universidad del Valle

Profesora del Departamento de Ciencias Básicas de la Universidad Ices.

Profesora del Departamento de Morfología de la Universidad del Valle.

Citas

Ninomiya J, Oyama T, Horiguchi J, Koibuchi Y, Yoshida T, Iijima K, et al. Two cases of breast cancer with cartilaginous and osseous metaplasia. Breast Cancer. 2005;12(1):52-6.

Yoichi T, Nagashima T, Yagata H, Yoshida K, Suzuki M, Fujimori T, et al. Breast cancer with cartilaginous and/or osseous metaplasia. Breast Cancer. 2009;16(3):234-7.

Kijima Y, Umekita Y, Yoshinaka H, Owaki T, Sakamoto A, Yoshida H, et al. A case of breast carcinoma with cartilaginous and osseous metaplasia. Breast Cancer. 2006;13(2):214-9.

Kawabata A, Okano K, Uchida K, Yamaguchi R, Hayashi T, Tateyama S. Co-localization of chondromodulin-I (ChM-I) and bone morphogenetic protein-6 (BMP-6) in myoepithelial cells of canine mammary tumors. J Vet Med Sci. 2005;67(11):1097-102.

Fadare O, Bifulco C, Carter D, Parkash V. Cartilaginous differentiation in peritoneal tissues: a report of two cases and a review of the literature. Mod Pathol. 2002;15(7):777-80.

Kotru M, Gupta R, Aggarwal S, Sharma S, Bhatia A. Cartilaginous metaplasia in uterine leiomyoma. Arch Gynecol Obstet. 2009;280(4):671-3.

Christensen TJ, Annis P, Hohl JB, Patel AA. Neuroforaminal chondrocyte metaplasia and clustering associated with recombinant bone morphogenetic protein-2 usage in transforaminal lumbar interbody fusion. Spine J. 2014;14(6):e23-8.

Taglialavoro G, Moro S, Stecco C, Pennelli N. [Bilateral synovial chondromatosis of the first metatarsophalangeal joint: a case report. ]. Reumatismo. 2003;55(4):263-6.

Später D, Hill TP, O'sullivan RJ, Gruber M, Conner DA, Hartmann C. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133(15):3039-49.

Pundziute G, Schuijf JD, Jukema JW, van Werkhoven JM, Nucifora G, Decramer I, et al. Type 2 diabetes is associated with more advanced coronary atherosclerosis on multislice computed tomography and virtual histology intravascular ultrasound. J Nucl Cardiol. 2009;16(3):376-83.

Qiao JH, Mertens RB, Fishbein MC, Geller SA. Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: morphologic evidence of enchondral ossification. Hum Pathol. 2003;34(4):402-7.

Qiao JH, Fishbein MC, Demer LL, Lusis AJ. Genetic determination of cartilaginous metaplasia in mouse aorta. Arterioscler Thromb Vasc Biol. 1995;15(12):2265-72.

Speer MY, Yang HY, Brabb T, Leaf E, Look A, Lin WL, et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 2009;104(6):733-41.

Chertow GM, Raggi P, Chasan-Taber S, Bommer J, Holzer H, Burke SK. Determinants of progressive vascular calcification in haemodialysis patients. Nephrol Dial Transplant. 2004;19(6):1489-96.

Naik V, Leaf EM, Hu JH, Yang HY, Nguyen NB, Giachelli CM, et al. Sources of cells that contribute to atherosclerotic intimal calcification: an in vivo genetic fate mapping study. Cardiovasc Res. 2012;94(3):545-54.

Aupperle H, März I, Schoon HA. Detection and characterization of chondroid metaplasia in canine atrioventricular valves. J Comp Pathol. 2008;139(2-3):113-20.

Nguyen N, Naik V, Speer MY. Diabetes mellitus accelerates cartilaginous metaplasia and calcification in atherosclerotic vessels of LDLr mutant mice. Cardiovasc Pathol. 2013;22(2):167-75.

Fitzpatrick LA, Turner RT, Ritman ER. Endochondral bone formation in the heart: a possible mechanism of coronary calcification. Endocrinology. 2003;144(6):2214-9.

Wei Q, Ren X, Jiang Y, Jin H, Liu N, Li J. Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress. BMC Cardiovasc Disord. 2013;13:13.

Kiyan Y, Tkachuk S, Hilfiker-Kleiner D, Haller H, Fuhrman B, Dumler I. oxLDL induces inflammatory responses in vascular smooth muscle cells via urokinase receptor association with CD36 and TLR4. J Mol Cell Cardiol. 2014;66:72-82.

Durán AC, López D, Guerrero A, Mendoza A, Arqué JM, Sans-Coma V. Formation of cartilaginous foci in the central fibrous body of the heart in Syrian hamsters (Mesocricetus auratus). J Anat. 2004;205(3):219-27.

Gopalakrishnan G, Blevins WE, Van Alstine WG. Osteocartilaginous metaplasia in the right atrial myocardium of healthy adult sheep. J Vet Diagn Invest. 2007;19(5):518-24.

Speer MY, Li X, Hiremath PG, Giachelli CM. Runx2/Cbfa1, but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 2010;110(4):935-47.

Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem. 2008;283(22):15319-27.

Mathieu P, Roussel JC, Dagenais F, Anegon I. Cartilaginous metaplasia and calcification in aortic allograft is associated with transforming growth factor beta 1 expression. J Thorac Cardiovasc Surg. 2003;126(5):1449-54.

Plenk H, Shum JC, Cruise GM, Killer M. Cartilage and bone neoformation in rabbit carotid bifurcation aneurysms after endovascular coil embolization. Eur Cell Mater. 2008;16:69-79.

Caggiati A, Franceschini M. Cartilaginous metaplasia of varicose veins: a case report. Phlebology. 2013;28(3):165-7.

Shen J, Yang M, Jiang H, Ju D, Zheng JP, Xu Z, et al. Arterial injury promotes medial chondrogenesis in Sm22 knockout mice. Cardiovasc Res. 2011;90(1):28-37.

Ndip A, Williams A, Jude EB, Serracino-Inglott F, Richardson S, Smyth JV, et al. The RANKL/RANK/OPG signaling pathway mediates medial arterial calcification in diabetic Charcot neuroarthropathy. Diabetes. 2011;60(8):2187-96.

Asanuma A, Sonoki H, Koga T. Experimental myocardial infarction with cartilaginous and osseous metaplasia in SHR and WKY rats. Exp Anim. 1995;44(2):163-7.

Steiner I, Kasparová P, Kohout A, Dominik J. Bone formation in cardiac valves: a histopathological study of 128 cases. Virchows Arch. 2007;450(6):653-7.

Callegari A, Coons ML, Ricks JL, Rosenfeld ME, Scatena M. Increased calcification in osteoprotegerin-deficient smooth muscle cells: Dependence on receptor activator of NF-κB ligand and interleukin 6. J Vasc Res. 2014;51(2):118-31.

Panizo S, Cardus A, Encinas M, Parisi E, Valcheva P, López-Ongil S, et al. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ Res. 2009;104(9):1041-8.

Morony S, Tintut Y, Zhang Z, Cattley RC, Van G, Dwyer D, et al. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(-/-) mice. Circulation. 2008;117(3):411-20.

Zhou S, Fang X, Xin H, Li W, Qiu H, Guan S. Osteoprotegerin Inhibits Calcification of Vascular Smooth Muscle Cell via Down Regulation of the Notch1-RBP-Jκ/Msx2 Signaling Pathway. PLoS ONE. 2013;8(7):e68987.

El-Maadawy S, Kaartinen MT, Schinke T, Murshed M, Karsenty G, McKee MD. Cartilage formation and calcification in arteries of mice lacking matrix Gla protein. Connect Tissue Res. 2003;44 Suppl 1:272-8.

Boström KI. Cell differentiation in vascular calcification. Z Kardiol. 2000;89 Suppl 2:69-74.

Pivin E, Ponte B, Pruijm M, Ackermann D, Guessous I, Ehret G, et al. Inactive Matrix Gla-Protein Is Associated With Arterial Stiffness in an Adult Population–Based Study. Hypertension. 2015;66(1):85-92.

Liu YP, Gu YM, Thijs L, Knapen MH, Salvi E, Citterio L, et al. Inactive matrix Gla protein is causally related to adverse health outcomes: a Mendelian randomization study in a Flemish population. Hypertension. 2015;65(2):463-70.

Schurgers LJ, Joosen IA, Laufer EM, Chatrou ML, Herfs M, Winkens MH, et al. Vitamin K-antagonists accelerate atherosclerotic calcification and induce a vulnerable plaque phenotype. PLoS One. 2012;7(8):e43229.

Dana P, Adela S-T, Elena G, Gyorgy B, Mirela C, Smaranda B, et al. The relationship between matrix GLA protein (MGP) and carotid stenosis. Revista Română de Medicină de Laborator Vol. 2011;19(2/4).

Zhu Q, Guo R, Liu C, Fu D, Liu F, Hu J, et al. Endoplasmic Reticulum Stress-Mediated Apoptosis Contributing to High Glucose-Induced Vascular Smooth Muscle Cell Calcification. J Vasc Res. 2015;52(5):291-8.

Lee SJ, Jeong JY, Oh CJ, Park S, Kim JY, Kim HJ, et al. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation. Sci Rep. 2015;5:16577.

Bessueille L, Fakhry M, Hamade E, Badran B, Magne D. Glucose stimulates chondrocyte differentiation of vascular smooth muscle cells and calcification: A possible role for IL-1β. FEBS Lett. 2015;589(19 Pt B):2797-804.

Hayes MJ, Thomas D, Emmons A, Giordano TJ, Kleer CG. Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res. 2008;14(13):4038-44.

Konoplyannikov M, Nurminskaya M. New therapeutic approaches to arterial calcification via inhibition of transglutaminase and β-catenin signaling. Curr Pharm Des. 2014;20(37):5811-20.

Beazley KE, Lima F, Borras T, Nurminskaya M. Attenuation of chondrogenic transformation in vascular smooth muscle by dietary quercetin in the MGP-deficient mouse model. PLoS One. 2013;8(9):e76210.

Beazley KE, Nurminsky D, Lima F, Gandhi C, Nurminskaya MV. Wnt16 attenuates TGFβ-induced chondrogenic transformation in vascular smooth muscle. Arterioscler Thromb Vasc Biol. 2015;35(3):573-9.

Paloian NJ, Leaf EM, Giachelli CM. Osteopontin protects against high phosphate-induced nephrocalcinosis and vascular calcification. Kidney Int. 2016;89(5):1027-36.

Louvet L, Büchel J, Steppan S, Passlick-Deetjen J, Massy ZA. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol Dial Transplant. 2013;28(4):869-78.

Herencia C, Rodríguez-Ortiz ME, Muñoz-Castañeda JR, Martinez-Moreno JM, Canalejo R, Montes de Oca A, et al. Angiotensin II prevents calcification in vascular smooth muscle cells by enhancing magnesium influx. Eur J Clin Invest. 2015;45(11):1129-44.

Fujimoto H, Kobayashi H, Ogasawara K, Yamakado M, Ohno M. Association of the manganese superoxide dismutase polymorphism with vasospastic angina pectoris. J Cardiol. 2010;55(2):205-10.

Fujimoto H, Taguchi J, Imai Y, Ayabe S, Hashimoto H, Kobayashi H, et al. Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur Heart J. 2008;29(10):1267-74.

Peralta-Ramírez A, Montes de Oca A, Raya AI, Pineda C, López I, Guerrero F, et al. Vitamin E protection of obesity-enhanced vascular calcification in uremic rats. Am J Physiol Renal Physiol. 2014;306(4):F422-9.

Meilhac O, Ramachandran S, Chiang K, Santanam N, Parthasarathy S. Role of arterial wall antioxidant defense in beneficial effects of exercise on atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2001;21(10):1681-8.

Rauramaa R, Halonen P, Väisänen SB, Lakka TA, Schmidt-Trucksäss A, Berg A, et al. Effects of aerobic physical exercise on inflammation and atherosclerosis in men: the DNASCO Study: a six-year randomized, controlled trial. Ann Intern Med. 2004;140(12):1007-14.

Garelnabi M, Mahini H, Wilson T. Quercetin intake with exercise modulates lipoprotein metabolism and reduces atherosclerosis plaque formation. J Int Soc Sports Nutr. 2014;11:22.

Watts K, Beye P, Siafarikas A, Davis EA, Jones TW, O'Driscoll G, et al. Exercise training normalizes vascular dysfunction and improves central adiposity in obese adolescents. J Am Coll Cardiol. 2004;43(10):1823-7.

Radom-Aizik S, Zaldivar FP, Haddad F, Cooper DM. Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease. Brain Behav Immun. 2014;39:121-9.

Okabe TA, Shimada K, Hattori M, Murayama T, Yokode M, Kita T, et al. Swimming reduces the severity of atherosclerosis in apolipoprotein E deficient mice by antioxidant effects. Cardiovasc Res. 2007;74(3):537-45.

Shimada K, Kishimoto C, Okabe TA, Hattori M, Murayama T, Yokode M, et al. Exercise training reduces severity of atherosclerosis in apolipoprotein E knockout mice via nitric oxide. Circ J. 2007;71(7):1147-51.

Fleg JL, Forman DE, Berra K, Bittner V, Blumenthal JA, Chen MA, et al. Secondary prevention of atherosclerotic cardiovascular disease in older adults: a scientific statement from the American Heart Association. Circulation. 2013;128(22):2422-46.

Matsuzawa Y, Sugiyama S, Sugamura K, Sumida H, Kurokawa H, Fujisue K, et al. Successful diet and exercise therapy as evaluated on self-assessment score significantly improves endothelial function in metabolic syndrome patients. Circ J. 2013;77(11):2807-15.

Descargas

Publicado

2016-12-20

Cómo citar

1.
Rosero Salazar DH. Mecanismos moleculares en metaplasia osteocartilaginosa vascular: revisión sistemática. Rev Fac Cien Med Univ Nac Cordoba [Internet]. 20 de diciembre de 2016 [citado 29 de marzo de 2024];73(4):279-90. Disponible en: https://revistas.unc.edu.ar/index.php/med/article/view/14567

Número

Sección

Originales Breves