Innate receptors and IL-17 in the immune response against human pathogenic fungi

María Soledad Miró, Cecilia Vigezzi, Emilse Rodriguez, Paula Alejandra Icely, Juan Pablo Caeiro, Fernando Oscar Riera, Diana Teresa Masih, Claudia Elena Sotomayor

Resumen


In recent years, the rise of human fungal infections has been associated to lack of early diagnosis, uneffective antifungal therapies and vaccines. Disturbance in immune homeostasis, which can be caused by medical interventions and immunosuppression induced by disease, are well known as risk factors for these pathologies. Cells of the innate immune system are equipped with surface and cytoplasmic receptors for recognition of microorganisms called pattern recognition receptors (PRRs). PRRs recognize specific pathogen-associated molecular patterns (PAMPs) that are crucial for the activation and killing of pathogenic fungi by immune system.  This review will outline the PRRs and cells required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17. Finally, naturally occurring human mutations involved in the increased susceptibility to fungal infections are also discussed

Palabras clave


Human fungal infections, antifungal immunity, innate receptors, Dectin-1, Inflamasommes, IL-17

Referencias


- Kohler JR, Casadevall A, Perfect JR. The Spectrum of Fungi That Infects Humans. Cold Spring Harb Perspect Med 2014; doi: 10.1101/cshperspect.a019273

- Pfaller MA, Diekema DJ. Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem. Clin Microbol Rev, 2007; 27: 133-63.

- Perfect JR, Hachem R, Wingard JR. Update on Epidemiology of and Preventive Strategies for Invasive Fungal Infections in Cancer patients. Clin Infec Dis 2014; 59: 352-55.

- Singh N, Perfect JR. Immune reconstitution syndrome associated with opportunistic mycoses. Lancet Infect Dis 2007; 7: 395-401.

- Hube B. Fungal adaptation to the host environment. Curr Opin Microbiol 2009; 12: 347-49.

- Sotomayor CE and Rodriguez-Galán MC. Aspectos celulares y moleculares de la respuesta inmune frente a hongos. en Inmunopatología Molecular: nuevas fronteras de la Medicina. Bs. As. Editor: Gabriel Rabinovich. Editorial Panamericana. 2003; Cap 23: 154-72.

- Pappas PG. Opportunistic fungi: a view to the future. Am J Med Sci 2010; 340: 253-57.

- Brown A J, Odds FC, Gow NA. Infection-related gene expression in Candida albicans. Curr Opin Microbiol 2007; 10: 307-13.

- Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis.

Cold Spring Harb Perspect Med 2014; 4:a019760. doi: 10.1101/cshperspect.a019760.

- Casadevall A, Fang FC, Pirofski LA. Microbial virulence as an emergent property: consequences and opportunities. PLoS Pathog 2011; 7:e1002136.

- Paraje MG, Correa SG, Renna MS, Theumer M and CE Sotomayor. Candida albicans-secreted lipase induces injury and steatosis in immune and parenchymal cells. Can J Microbiol 2008; 54:647-59.

- Paraje MG, Correa SG, Albesa I and CE Sotomayor. Lipase of Candida albicans induces activation of NADPH oxidase and L-arginine pathways on resting and activated macrophages. BBRC 2009, 390:263-268.

- Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ. How Biofilms Evade Host Defenses. Microbiol Spectr 2015; 3: doi: 10.1128/microbiolspec.

- Romani L. Immunity to fungal infections. Nat Rev Immunol 2011; 11:275-88.

- van de Veerdonk FL, Kullberg BJ, van der Meer JW, Gow NA, Netea MG. Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 2008; 11: 305-12.

- Brown GD. Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol 2011; 29:1-21.

- Pericolini E, Gabrielli E, Amacker M, Kasper L, Roselletti E, et al. Secretory Aspartyl Proteinases Cause Vaginitis and Can Mediate Vaginitis Caused by Candida albicans in Mice. MBio 2015; 6:e00724. doi: 10.1128/mBio.00724-15.

- Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol 2015; 37: 97-106. doi: 10.1007/s00281-014-0462-4.

-Drummond RA, Gaffen SL, Hise AG, Brown GD. Innate Defense against Fungal Pathogens. Cold Spring Harb Perspect Med 2014; 5. pii: a019620. doi: 10.1101/ cshperspect.a019620

- Gonzaga de Freitas Araujo M, Pacifico M, Vilegas W, Campaner dos Santos L, Icely PA, Miró MS, Scarpa MV, Bauab TM, Sotomayor CE. Evaluation of Syngonanthus nitens (Bong.) Ruhl. extract as antifungal and in treatment of vulvovaginal candidiasis. Med Mycol 2013; 51: 673-82.

- Renna MS, Figueredo CM, Rodriguez-Galán MC, Icely PA, Cejas H, Cano R, Correa SG, Sotomayor CE. Candida albicans up-regulates the Fas-L expression in liver Natural Killer and Natural Killer T cells. Immunobiol 2015; doi: 10.1016/j.imbio.

- Jaeger M, Stappers MH, Joosten LA, Gyssens IC, Netea MG. Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease. Future Microbiol 2015; 10: 989-1008. doi: 10.2217/fmb.15.37.

- Becker DC, Ifrim JQ, Netea MG, van de Veerdonk FL. Antifungal innate immunity: recognition and inflammatory networks. Semin Immunopathol 2014; doi 10.1007/s00281-014-0467.

- Bretz C, Gersuk G, Knoblaugh S, Chaudhary N, Randolph-Habecker J, et al. MyD88 signaling contributes to early pulmonary responses to Aspergillus fumigatus. Infect Immun 2008; 76: 952-58.

- Calich VL, Pina A, Felonato M, Bernardino S, Costa TA, Loures FV. Toll-like receptors and fungal infections: The role of TLR2, TLR4 and MyD88 in paracoccidioidomycosis. FEMS Immunol Med Microbiol 2008; 53: 1-7.

- von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 2008; 321: 691-96.

-Plantinga TS, Johnson MD, Scott WK, van de Vosse E, Velez Edwards DR, et al.. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis 2012; 205: 934-43.

-Bochud PY, Chien JW, Marr KA, Leisenring WM, Upton A, et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 2008; 359: 1766-1777.

- Netea MG, Gow NAR, Munro CA, Bates S, Collins C, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 2006; 116: 1642-50.

- Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol 2015; 32: 21-7. doi: 10.1016/j.coi.201

- Marakalala JM, Kerrigan AM and G D. Brown. Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans. Mamm Genome 2011, 22: 55-65.

- Fresno C, Soulat D, Roth S, Blazek K, Udalova I, Sancho D, et al. Interferon- Production via Dectin-1-Syk-IRF5 Signaling in Dendritic Cells Is Crucial for Immunity to Candida albicans. Immunity 2013, 38:1176-86.

- Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 2009; 361: 1760-1767.

- Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 2009; 361: 1727-35.

- Kerscher B, Willment JA, Brown GD. The Dectin-2 family of C-type lectin-like receptors: An update. Int Immunol 2013; 25: 271-77.

- van de Veerdonk FL et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 2009; 5: 329-40.

- Sainz J, Lupianez CB, Segura-Catena J, Vazquez L, Rios R, et al. Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary Aspergillosis infection. PLoS ONE 2012; 7: e32273.

- van de Veerdonk FL, Joosten LA, Netea MG. The interplay between inflammasome activation and antifungal host defense. Immunol Rev 2015; 265: 172-80. doi: 10.1111/imr.12280.

- Lev-Sagie A, Prus D, Linhares IM, lavy Y, Ledger WL, Witkins SS. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am J Obstet Gynecol 2009; 200: 303 e1–6.

- Netea MG, Kullberg BJ. Epithelial sensing of fungal invasion. Cell Host Microbe 2010; 16:219-26.

- Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, Thavaraj S, et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 2010; 8: 225-35.

- Sun WK, Lu X, Li X, Sun QY, Su X, et al. Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells. Eur J Clin Microbiol Infect Dis. 2012; 31: 2755-64.

- Wuthrich M, Deepe G Jr., Klein B. Adaptive Immunity to Fungi. Annu Rev Immunol 2012; 30: 115-48.

- Feriotti C, Loures FV, de Araujo EF, da Costa TA, Calich VLG. Mannosyl-recognizing receptors induce an M1-like phenotype in macrophages of susceptible mice but an M2-like phenotype in mice resistant to a fungal infection. PLoS ONE 2013; 8: e54845.

- Byrd AS, O’Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol 2013; 190: 4136-48.

- Holland SM: Chronic granulomatous disease. Clin Rev Allergy Immunol 2010; 38: 3-10.

- Sobel JD. Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol 2015; doi: 10.1016/j.ajog.2015.06.067.

Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 2009; 206: 299-311.

Stockinger, B., M. Veldhoen, and B. Martin. Th17 T cells: Linking innate and adaptive immunity. Semin Immunol 2007; 19: 353-61.

Gladiator A, LeibundGut-Landmann S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol 2013; 190: 521-25.

Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008. 28: 29-39.

-Borghi M, Renga G, Puccetti M, Oikonomou V, Palmieri M, et al. Antifungal Th Immunity: Growing up in Family. Front Immunol 2014 ; 5: 506. doi: 10.3389/fimmu.2014.

- Milner JM, Brenchley JM, Laurence A, Freeman AF, Hill BJ et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 2008; 452: 773-776.

- Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 2010, 207: 299-308.

- Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 2010, 207: 291-97.

- Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 2011; 332: 65-72.

- Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, et al. Gain-of function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 2011, 208: 1635-41.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2017 Revista de la Facultad de Ciencias Médicas

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.

Revista de la Facultad de Ciencias Médicas.
Pabellón Perú - Ciudad Universitaria
Facultad de Ciencias Médicas. Universidad Nacional de Córdoba
Argentina
ISSN impreso: 1853-0605 | ISSN en linea: 0014-6722

revistafcm@fcm.unc.edu.ar