Sobre el uso imágenes microtomográficas para estudios de carbón de madera arqueológico

Autores/as

  • Cristina Marilin Calo Instituto de Antropología de Córdoba, IDACOR, CONICET, Museo de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Argentina https://orcid.org/0000-0002-1444-8231
  • Bernarda Marconetto Instituto de Antropología de Córdoba, IDACOR, CONICET, Museo de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Argentina https://orcid.org/0000-0002-1865-4024

DOI:

https://doi.org/10.31048/py9r4w88

Palabras clave:

Imágenes microtomográficas, Análisis antracológicos, Muestras experimentales de carbón de madera, Procesamiento de imágenes 3D, Modelos virtuales

Resumen

La aplicación de microtomografías a los análisis antracológicos cuenta con escasas referencias por el momento. Las expectativas en torno a sus potencialidades, sugeridas en parte por su uso sobre materiales similares, precisan ser evaluadas en la práctica antracológica, en función de las características particulares de su objeto de estudio y de las problemáticas que aborda. Este trabajo busca evidenciar algunos beneficios y desventajas de la técnica en el análisis de conjuntos de carbón de madera arqueológico y señalar aspectos sobre los cuales ésta puede hacer contribuciones significativas. Se presentan aquí los pasos de un plan experimental de adquisición de microtomografías aplicado a un conjunto de muestras de referencia actuales de carbón de madera. Esta propuesta incluye además un breve protocolo para la preparación de muestras de carbón actual para la adquisición de imágenes microtomográficas. Luego, se refieren los procedimientos digitales de análisis para una serie de caracteres anatómicos diagnósticos empleados para la identificación taxonómica de maderas y carbones. Finalmente se presentan descripciones de la anatomía microscópica de algunos ejemplares realizados íntegramente a partir del análisis de los modelos virtuales obtenidos por microtomografía. Los resultados sugieren que la microtomografía de rayos X es una técnica con la que se obtienen datos de calidad para la antracología. Sin embargo, la inversión de tiempo y recursos necesarios para estudiar los grandes conjuntos de muestras que son la base privilegiada de la especialidad podrían interferir en su aplicabilidad. En casos particulares de estudios que tengan como base conjuntos reducidos, poco variables o bien ejemplares específicos, la microtomografía presenta una serie de ventajas directamente relacionadas con la posibilidad de explorar la muestra a través de infinitos planos de visualización, la automatización de las mediciones y la densidad de datos morfológicos que es posible extraer de las imágenes tridimensionales para incluir en cálculos de índices y otros marcadores estadísticos, la no destructividad de los procesos de preparación y analíticos involucrados, la preservación de los ejemplares físicos y la documentación simultánea de grandes cantidades de información almacenada y disponible en modelos virtuales de los materiales estudiados. 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Andonova, M. (2021). Ancient basketry on the inside: X-ray computed microtomography for the non-destructive assessment of small archaeological monocotyledonous fragments: examples from Southeast Europe. Heritage Science, 9(1), 158. https://doi.org/10.1186/s40494-021-00631-z

Azeredo, S. R., Cesareo, R., Jordan, R. F., Fernandez, A., Gigante, G. E., Bustamante, A., y Lopes, R. T. (2019). Analysis of precious metals from the tomb of the “Lady of Cao” by X-ray microtomography and digital radiography. X-Ray Spectrometry, 48(5), 499–504. https://doi.org/10.1002/xrs.3013

Baldin, T., Siegloch, A. M., y Marchiori, J. N. C. (2016). COMPARED ANATOMY OF SPECIES OF Calycophyllum DC. (Rubiaceae). Revista Árvore, 40, 759–768. https://doi.org/10.1590/0100-67622016000400020

Barron, A., y Denham, T. (2018). A microCT protocol for the visualisation and identification of domesticated plant remains within pottery sherds. Journal of Archaeological Science: Reports, 21, 350–358. https://doi.org/10.1016/j.jasrep.2018.07.024

Barron, A., Pritchard, J., y Denham, T. (2022). Identifying archaeological parenchyma in three dimensions: Diagnostic assessment of five important food plant species in the Indo-Pacific region. Archaeology in Oceania, 57(3), 189–213. https://doi.org/10.1002/arco.5276

Barron, A. (2024). Applications of Microct Imaging to Archaeobotanical Research. Journal of Archaeological Method and Theory, 31(2), 557–592. https://doi.org/10.1007/s10816-023-09610-z

Baruchel, J., Cloetens, P., Härtwig, J., Ludwig, W., Mancini, L., Pernot, P., y Schlenker, M. (2000). Phase imaging using highly coherent X-rays: Radiography, tomography, diffraction topography. Journal of Synchrotron Radiation, 7(3), 196–201. https://doi.org/10.1107/S0909049500002995

Beck, L., Cuif, J.-P., Pichon, L., Vaubaillon, S., Dambricourt Malassé, A., y Abel, R. L. (2012). Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 273, 203–207. https://doi.org/10.1016/j.nimb.2011.07.076

Bello, S. M., De Groote, I., y Delbarre, G. (2013). Application of 3-dimensional microscopy and micro-CT scanning to the analysis of Magdalenian portable art on bone and antler. Journal of Archaeological Science, 40(5), 2464–2476. https://doi.org/10.1016/j.jas.2012.12.016

Bernardini, F., Leghissa, E., Prokop, D., Velušček, A., De Min, A., Dreossi, D., Donato, S., Tuniz, C., Princivalle, F., y Montagnari Kokelj, M. (2019). X-ray computed microtomography of Late Copper Age decorated bowls with cross-shaped foots from central Slovenia and the Trieste Karst (North-Eastern Italy): Technology and paste characterisation. Archaeological and Anthropological Sciences, 11(9), 4711–4728. https://doi.org/10.1007/s12520-019-00811-w

Bird, M. I., Ascough, P. L., Young, I. M., Wood, C. V., y Scott, A. C. (2008). X-ray microtomographic imaging of charcoal. Journal of Archaeological Science, 35(10), 2698–2706. https://doi.org/10.1016/j.jas.2008.04.018

Bodin, S. C., Scheel-Ybert, R., Beauchêne, J., Molino, J.-F., y Bremond, L. (2019). CharKey: An electronic identification key for wood charcoals of French Guiana. IAWA Journal, 40(1), 75-S20. https://doi.org/10.1163/22941932-40190227

Boschin, F., Zanolli, C., Bernardini, F., Princivalle, F., y Tuniz, C. (2015). A Look from the Inside: MicroCT Analysis of Burned Bones. Ethnobiology Letters, 6(2), 258–266. https://doi.org/10.14237/ebl.6.2.2015.365

Brodersen, C. R. (2013). Visualizing wood anatomy in three dimensions with high-resolution X-ray micro-tomography (μCT) – a review –. IAWA Journal, 34(4), 408–424. https://doi.org/10.1163/22941932-00000033

Calo, C. M., Rizzutto, M. A., Carmello-Guerreiro, S. M., Dias, C. S. B., Watling, J., Shock, M. P., Zimpel, C. A., Furquim, L. P., Pugliese, F., y Neves, E. G. (2020). A correlation analysis of Light Microscopy and X-ray MicroCT imaging methods applied to archaeological plant remains’ morphological attributes visualization. Scientific Reports, 10(1), 15105. https://doi.org/10.1038/s41598-020-71726-z

Calo, C. M., Rizzutto, M. A., Watling, J., Furquim, L., Shock, M. P., Andrello, A. C., Appoloni, C. R., Freitas, F. O., Kistler, L., Zimpel, C. A., Hermenegildo, T., Neves, E. G., y Pugliese, F. A. (2019). Study of plant remains from a fluvial shellmound (Monte Castelo, RO, Brazil) using the X-ray MicroCT imaging technique. Journal of Archaeological Science: Reports, 26, 101902. https://doi.org/10.1016/j.jasrep.2019.101902

Chabal, L. (1988). Pourquoi et comment prélever les charbons de bois pour la période antique: Les méthodes utilisées sur le site de Lattes (Hérault). Lattara, 1, 187–222.

Coubray, S., Zech-Matterne, V., y Mazurier, A. (2010). The earliest remains of a Citrus fruit from a western Mediterranean archaeological context? A microtomographic-based re-assessment. Comptes Rendus Palevol, 9(6–7), 277–282. https://doi.org/10.1016/j.crpv.2010.07.003

Detienne, P., y Jacquet, P. (1983). Atlas d’identification des bois de l’Amazonie et des régions voisines /. Centre Technique Forestier Tropical.

Dierickx, S., Genbrugge, S., Beeckman, H., Hubau, W., Kibleur, P., y Van den Bulcke, J. (2024). Non-destructive wood identification using X-ray µCT scanning: Which resolution do we need? Plant Methods, 20(1), 98. https://doi.org/10.1186/s13007-024-01216-0

Dreossi, D., Favretto, S., Fioravanti, M., Mancini, L., Rigon, L., Sodini, N., Tromba, G., y Zanini, F. (2010). Synchrotron radiation Micro-tomography: A non-invasive tool for th characterization of archaeological wood. In L. Uzielli (Ed.), Wood Science for Conservation of Cultural Heritage. Firenze University Press.

Gálvez, G. I. E. C., Rocha, M. P. da, Klitzke, R. J., y Mora, H. E. G. (2020). Caracterización anatómica y variabilidad de los componentes de la madera de Calycophyllum spruceanum (Benth). Hook. Revista Ciência da Madeira (Brazilian Journal of Wood Science), 11(2), Article 2. https://periodicos.ufpel.edu.br/index.php/cienciadamadeira/article/view/17300

George, M. J., Paris, E. H., Liu, W., López Bravo, R., y Lalo Jacinto, G. (2024). Applications of Micro-CT Imaging in Age-At-Death Estimates of Maya Dogs. Environmental Archaeology, 0(0), 1–16. https://doi.org/10.1080/14614103.2024.2380117

Göldner, D., Karakostis, F. A., y Falcucci, A. (2022). Practical and technical aspects for the 3D scanning of lithic artefacts using micro-computed tomography techniques and laser light scanners for subsequent geometric morphometric analysis. Introducing the StyroStone protocol. PLOS ONE, 17(4), e0267163. https://doi.org/10.1371/journal.pone.0267163

Gonçalves, T. a. P., y Scheel-Ybert, R. (2016). Charcoal anatomy of Brazilian species. I. Anacardiaceae. Anais Da Academia Brasileira de Ciências, 88, 1711–1725. https://doi.org/10.1590/0001-3765201620150433

Gonçalves, T. A. P., y Scheel-Ybert, R. (2017). Primeiro atlas antracológico de espécies brasileiras. Série Livros Digital, 10. http://pantheon.ufrj.br/handle/11422/15320

Grabner, M., Salaberger, D., y Okochi, T. (2009). The need of high resolution μ-X-ray CT in dendrochronology and in wood identification. 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis, 349–352. https://doi.org/10.1109/ISPA.2009.5297695

Haneca, K., Deforce, K., Boone, M. N., Van Loo, D., Dierick, M., Van Acker, J., y Van Den Bulcke, J. (2012). X-Ray Sub-Micron Tomography as a Tool for the Study of Archaeological Wood Preserved Through the Corrosion of Metal Objects. Archaeometry, 54(5), 893–905. https://doi.org/10.1111/j.1475-4754.2011.00640.x

Hernández, W. J. L. (2020). Anatomía de Maderas de 130 Especies de Venezuela. Revista Pittieria, 0, Article 0.

Hubau, W., Bulcke, J. V. den, Kitin, P., Brabant, L., Acker, J. V., y Beeckman, H. (2013). Complementary Imaging Techniques for Charcoal Examination and Identification. IAWA Journal, 34(2), 147–168. https://doi.org/10.1163/22941932-00000013

Kahl, W.-A., y Ramminger, B. (2012). Non-destructive fabric analysis of prehistoric pottery using high-resolution X-ray microtomography: A pilot study on the late Mesolithic to Neolithic site Hamburg-Boberg. Journal of Archaeological Science, 39(7), 2206–2219. https://doi.org/10.1016/j.jas.2012.02.029

Karjalainen, V.-P., Finnilä, M. A. J., Salmon, P. L., y Lipkin, S. (2023). Micro-computed tomography imaging and segmentation of the archaeological textiles from Valmarinniemi. Journal of Archaeological Science, 160, 105871. https://doi.org/10.1016/j.jas.2023.105871

Marconetto, M. B. (2010). Paleoenvironment and anthracology: Determination of variations in humidity based on anatomical characters in archealogical plant charcoal (Ambato Valley, Catamarca, Argentina). Journal of Archaeological Science, 37(6), 1186–1191. https://doi.org/10.1016/j.jas.2009.12.016

Machado, A. S., Silva, A. S. S., Campos, G. N., Gomes, C. S., Oliveira, D. F., y Lopes, R. T. (2019). Analysis of metallic archaeological artifacts by x-ray computed microtomography technique. Applied Radiation and Isotopes, 151, 274–279. https://doi.org/10.1016/j.apradiso.2019.06.016

Mizuno, S., Torizu, R., y Sugiyama, J. (2010). Wood identification of a wooden mask using synchrotron X-ray microtomography. Journal of Archaeological Science, 37(11), 2842–2845. https://doi.org/10.1016/j.jas.2010.06.022

Murphy, C., y Fuller, D. Q. (2017). Seed coat thinning during horsegram (Macrotyloma uniflorum) domestication documented through synchrotron tomography of archaeological seeds. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05244-w

Nava, A., Coppa, A., Coppola, D., Mancini, L., Dreossi, D., Zanini, F., Bernardini, F., Tuniz, C., y Bondioli, L. (2017). Virtual histological assessment of the prenatal life history and age at death of the Upper Paleolithic fetus from Ostuni (Italy). Scientific Reports, 7(1), 9427. https://doi.org/10.1038/s41598-017-09773-2

Ngan-Tillard, D., Dijkstra, J., Verwaal, W., Mulder, A., Huisman, H. (D J.), y Müller, A. (2015). Under Pressure: A Laboratory Investigation into the Effects of Mechanical Loading on Charred Organic Matter in Archaeological Sites. Conservation and Management of Archaeological Sites, 17(2), 122–142. https://doi.org/10.1080/13505033.2015.1124179

Obata, H., Miyaura, M., y Nakano, K. (2020). Jomon pottery and maize weevils, Sitophilus zeamais, in Japan. Journal of Archaeological Science: Reports, 34(Part A), 102599. https://doi.org/10.1016/j.jasrep.2020.102599

Pritchard, J., Lewis, T., Beeching, L., y Denham, T. (2019). An assessment of microCT technology for the investigation of charred archaeological parenchyma from house sites at Kuk Swamp, Papua New Guinea. Archaeological and Anthropological Sciences, 11(5), 1927–1938. https://doi.org/10.1007/s12520-018-0648-0

Puhar, E. G., Korat, L., Erič, M., Jaklič, A., y Solina, F. (2022). Microtomographic Analysis of a Palaeolithic Wooden Point from the Ljubljanica River. Sensors, 22(6), Article 6. https://doi.org/10.3390/s22062369

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., y Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529. https://doi.org/10.1186/s12859-017-1934-z

Scheel-Ybert, R. (2004). Teoria e método em Antracologia. 2- Técnicas de campo e laboratório. Arquivos Do Museu Nacional, 62(4), 343–356.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., y Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019

Schneider, C. A., Rasband, W. S., y Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089

Souza-Pinto, N. R. D., y Scheel-Ybert, R. (2021). Charcoal anatomy of Brazilian species. II. 15 native species occurring in Atlantic or Amazon rainforest. Anais Da Academia Brasileira de Ciências, 93(4), e20190983. https://doi.org/10.1590/0001-3765202120190983

Stelzner, I., Stelzner, J., Gwerder, D., Martinez-Garcia, J., y Schuetz, P. (2023). Imaging and Assessment of the Microstructure of Conserved Archaeological Pine. Forests, 14(2), 211. https://doi.org/10.3390/f14020211

Stelzner, J., y Million, S. (2015). X-ray Computed Tomography for the anatomical and dendrochronological analysis of archaeological wood. Journal of Archaeological Science, 55, 188–196. https://doi.org/10.1016/j.jas.2014.12.015

Stock, S. R. (2008). Microcomputed tomography: Methodology and applications (1st ed.). CRC Press.

Trtik, P., Dual, J., Keunecke, D., Mannes, D., Niemz, P., Stähli, P., Kaestner, A., Groso, A., y Stampanoni, M. (2007). 3D imaging of microstructure of spruce wood. Journal of Structural Biology, 159(1), 46–55. https://doi.org/10.1016/j.jsb.2007.02.003

Van den Bulcke, J., Boone, M., Van Acker, J., Stevens, M., y Van Hoorebeke, L. (2009). X-ray tomography as a tool for detailed anatomical analysis. Annals of Forest Science, 66(5), 508–508. https://doi.org/10.1051/forest/2009033

Villagran, X. S., Strauss, A., Alves, M., y Oliveira, R. E. (2019). Virtual micromorphology: The application of micro-CT scanning for the identification of termite mounds in archaeological sediments. Journal of Archaeological Science: Reports, 24, 785–795. https://doi.org/10.1016/j.jasrep.2019.02.035

Ward, I., Key, M. M., O’Leary, M. J., Carson, A., Shaw, J., y Maksimenko, A. (2019). Synchrotron X-ray tomographic imaging of embedded fossil invertebrates in Aboriginal stone artefacts from Western Australia: Implications for sourcing, distribution and chronostratigraphy. Journal of Archaeological Science: Reports, 26, 101840. https://doi.org/10.1016/j.jasrep.2019.05.005

Wheeler, E. A. (2011). InsideWood—A web resource for hardwood anatomy. IAWA Journal, 32(2), Article 2. https://doi.org/10.1163/22941932-90000051

Wheeler, E. A., Baas, P., y Gasson, P. (Eds.). (1989). IAWA list of microscopic features for hardwood identification. IAWA Bulletin n. s., 10(3), 219–332.

Wheeler, E. A., Gasson, P. E., y Baas, P. (2020). Using the InsideWood web site: Potentials and pitfalls. IAWA Journal, 41(4), 412–462. https://doi.org/10.1163/22941932-bja10032

Whitau, R., Dilkes-Hall, I. E., Dotte-Sarout, E., Langley, M. C., Balme, J., y O’Connor, S. (2016). X-ray computed microtomography and the identification of wood taxa selected for archaeological artefact manufacture: Rare examples from Australian contexts. Journal of Archaeological Science: Reports, 6, 536–546. https://doi.org/10.1016/j.jasrep.2016.03.021

Zhao, G., Qiu, Z., Shen, J., Deng, Z., Gong, J., y Liu, D. (2018). Internal Structural Imaging of Cultural Wooden Relics Based on Three-Dimensional Computed Tomography. BioResources, 13(1), 1548–1562. https://doi.org/10.15376/biores.13.1.1548-1562

Zong, Y., Yao, S., Crawford, G. W., Fang, H., Lang, J., Fan, J., Sun, Z., Liu, Y., Zhang, J., Duan, X., Zhou, G., Xiao, T., Luan, F., Wang, Q., Chen, X., y Jiang, H. (2017). Selection for Oil Content During Soybean Domestication Revealed by X-Ray Tomography of Ancient Beans. Scientific Reports, 7(1). https://doi.org/10.1038/srep43595

Descargas

Publicado

2024-12-23

Número

Sección

Arqueología

Cómo citar

Calo, C. M., & Marconetto, B. (2024). Sobre el uso imágenes microtomográficas para estudios de carbón de madera arqueológico. Revista Del Museo De Antropología, 17(3), 13-28. https://doi.org/10.31048/py9r4w88

Artículos similares

21-30 de 754

También puede Iniciar una búsqueda de similitud avanzada para este artículo.