EL ÁLGEBRA LINEAL DETRÁS DE LOS BUSCADORES DE INTERNET

Autores/as

  • Carlos D'Andrea Universitat de Barcelona - Facultat de Matemàtiques i Informàtica - Departament de Matemàtiques i Informàtica –

DOI:

https://doi.org/10.33044/revem.28173

Palabras clave:

Google, Buscadores de Internet, Algebra lineal, Algoritmo PageRank, Valores propios

Resumen

En este artículo explicamos cómo es que el exitoso algoritmo de búsquedas de internet funciona gracias al cálculo de valores propios de la matriz del grafo de páginas de internet.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Allesina, S., & Pascual, M. (2009). Googling food webs: Can an eigenvector measure species’ importance for coextinctions? PLOS Computational Biology, 9 (5). Retrieved from http://dx.plos.org/10.1371/journal.pcbi.1000494

Bollen, J., Rodriguez, M. A., & de Sompel, H. V. (2006). Journal status. Scientometrics, 69 (3), 669–687. Retrieved from http://arxiv.org/abs/cs/0601030

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web searchengine. In: Seventh International World-Wide Web Conference (WWW 1998), April 14–18, Brisbane, Australia.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., . . .Wieneran, J. (2000). Graph structure in the web. Computer Networks, 33, 309–320. Retrieved from http://www9.org/w9cdrom/160/160.html

Bryan, K., & Leise, T. (2006). The $ 25,000,000,000 eigenvector: the linear algebra behind google. SIAM Rev., 48 (3), 569–581.

de la Vega, H. M., Ones, V. G., & Garrido, M. F. (2006). The numerical linear algebra of google’s pagerank. Papers of the Mexican Mathematical Society (Spanish), 33–52, Aportaciones Mat. Comun., 36, Soc. Mat. Mexicana, México.

Fernández, P. (2004). El secreto de google y el álgebra lineal. Bol. Soc. Esp. Mat. Apl., 30, 115–141.

Gimbert-Quintilla, J. (2011). The mathematics of google: the pagerank algorithm. Butl. Soc. Catalana Mat., 26 (1), 29–56.

Google. (n.d.). We knew the web was big... Google Official Blog.

Ivan, G., & Grolmusz, V. (2011). When the web meets the cell: using personalized pagerank for analyzing protein interaction networks. Bioinformatics, 27 (3), 405–407.

Jiang, B. (2006). Ranking spaces for predicting human movement in an urban environment. , 23 (7), 823–837.

Langville, A. N., & Meyer, C. D. (2006). Google’s pagerank and beyond: the science of search engine rankings. Princeton University Press, Princeton, NJ.

Lin, Y., Shi, X., & Wei, Y. (2009). On computing pagerank via lumping the google matrix. J. Comput. Appl. Math., 224 (2), 702–708.

Serra-Capizzano, S. (2005). Jordan canonical form of the google matrix: a potential contribution to the pagerank computation. SIAM J. Matrix Anal. Appl., 27 (2), 305–312.

Wills, R. S. (n.d.). When rank trumps precision: Using the power method to compute google’s pagerank. Thesis (Ph.D.) – North Carolina State University.

Wills, R. S. (2006). Google’s pagerank: the math behind the search engine. Math. Intelligencer, 28 (4), 6–11.

Descargas

Publicado

2020-04-14

Número

Sección

Artículos de Matemática

Cómo citar

[1]
D'Andrea, C. 2020. EL ÁLGEBRA LINEAL DETRÁS DE LOS BUSCADORES DE INTERNET. Revista de Educación Matemática. 35, 1 (Apr. 2020), 23–38. DOI:https://doi.org/10.33044/revem.28173.