Calculation of geocentric radius by degrees of latitude

Authors

DOI:

https://doi.org/10.33044/revem.37305

Keywords:

geocentric latitude, geocentric radius, WGS84 ellipsoid

Abstract

The objective of this exercise is to face the loss of cognition and therefore the ability to perform geometric transformations from spherical models to ellipsoidal models within the teaching of geography at the undergraduate level. It is postulated that global navigation satellite systems based on reference ellipsoids are still conceived as spherical systems by many students due to the absence of practical examples that help their pedagogical understanding. To cover this gap in this work, the eccentricity, geocentric latitude and geocentric radius of the 90 main parallels of the reference ellipsoid WGS84 were calculated. Methodologically, we worked on a study universe greater than 324 thousand seconds of latitude. Of which only the top 90 cases are shown. Using an analog criterion, the geocentric radius was determined for the ports of Salina Cruz, Oaxaca, Tampico, Tamaulipas and Ensenada, Baja California. As results it is exhibited that the distance to the center of the Earth between Salina Cruz and Ensenada there is a difference of 4 kilometers.

Downloads

Download data is not yet available.

Author Biographies

Rodrigo Tovar Cabañas, El Colegio de Veracruz

Graduated in Geography from the National Autonomous University of Mexico; Master in Geography from the Faculty of Philosophy and Letters of the National Autonomous University of Mexico; Doctor in Geography from the Institute of Geography of the National Autonomous University of Mexico; post-doctorate in Urbanism from the Faculty of Architecture, Design and Urbanism of the Autonomous University of the State of Morelos; subject professor at the Universidad Veracruzana; University of Xalapa AC; and The College of Veracruz; research stays at the Center for Research and Higher Studies in Social Anthropology; and at the Faculty of Engineering of the Autonomous University of Tamaulipas. Full-time Professor at the Institute of Social Research of the Autonomous University of Nuevo León and at the Faculty of Human Development of the Autonomous University of Tlaxcala. Author of more than 50 scientific and research articles in internationally indexed journals, lecturer in more than 75 national and international congresses, collaborator of the Gedisa publishing house and the Juan Pablos publishing house. Member of the National System of Researchers level 1. Research lines: Environmental Geography.

Hipólito Villanueva Hernández, Universidad Autónoma de Nuevo León, Instituto de Investigaciones Sociales

Doctorado en Ciencias / UANL (2018). Maestría en Ciencias / UANL (2013). Licenciado en Ingeniería / UANL (1985). Profesor e investigador de tiempo completo en la UANL, profesor de posgrado en Ciencias Sociales y Desarrollo Sustentable.

Av. Lázaro Cárdenas Ote. y Paseo de la Reforma S/N. Campus Mederos, UANL. C.P.64930 Monterrey, N.L. México.

Shany Arely Vazquez Espinosa, Universidad Veracruzana, Instituto de Investigaciones Histórico sociales

Doctora en Historia por la Universidad Veracruzana; profesora de tiempo determinado en la Facultad de Geografía de la Universidad Veracruzana, profesora de tiempo determinado en la Facultad de Ingeniería de la Universidad de Xalapa. Autora de 20 artículos de investigación en revistas indexadas, conferencista en más de 20 congresos nacionales e internacionales, colaboradora de la editorial de la Universidad Autónoma de Nuevo León. Líneas de investigación: Turismo e Historia Regional.

References

De Andrade, R. (2008). “A herança de Sacrobosco e seus comentadores: desenvolvimentos e erros na astronomia geocêntrica do século XVI”. En: De Andrade, R., Silva, C., Hidalgo, J. y Al-Chueyr, L. (2008). Filosofia e Historia da Ciência no Cone Sul: Seleção de trabalhos do 5o. encontro. Campinas: Associação de Filosofia e História da Ciência do Cone Sul.

Franco, R. J. (1999). Nociones de topografía geodesia y cartografía. Cáceres: Universidad de Extremadura.

Gómez, C. (2007). la forma de la tierra: expedición para medir un grado del arco de meridiano en el virreinato del Perú (1735-1744). EGA. Revista de Expresión Gráfica Arquitectónica, (12): 128-139.

Jo, K., Lee, M., y Sunwoo, M. (2015). Fast GPS-DR sensor fusion framework: removing the geodetic coordinate conversion process. IEEE Transactions on Intelligent Transportation Systems, 17(7): 2008-2013.

Kopeikin, S. (2019). Reference-Ellipsoid and Normal Gravity Field in Post-Newtonian Geodesy. Relativistic Geodesy, 159–228. doi:10.1007/978-3-030-11500-5_6

Meza, P. (2011). El datum en navegación. Chile: Universidad Austral de Chile, Facultad de Ciencias de la Ingeniería.

Snyder, J. P. (1987). Map projections-A working manual (Vol. 1395). Washington D. C.: United States Geological Survey.

Stevens, B. L., y Lewis, F. L. (1992). Aircraft control and simulation. New York: Wiley.

Ulziisaikhan, G., y Oyuntsetseg, D. (2020). UAV and terrestrial laser scanner data processing for large scale topographic mapping. Mongolian Geoscientist, 50, 63-73.

Veloso, F. (2016). A elaboração de uma nova descrição geral da Terra nos primeiros séculos da época moderna (1522–1780). Revista Equador, 5(2): 159-189.

Published

2023-08-03

How to Cite

Tovar Cabañas, R., Villanueva Hernández, H., & Vazquez Espinosa, S. A. . (2023). Calculation of geocentric radius by degrees of latitude. Revista De Educación Matemática, 38(2), 3–15. https://doi.org/10.33044/revem.37305

Issue

Section

Artículos de Matemática