Growth model of Pacific Walrus (Odobenus rosmarus) population after the decrease of summer ice in the Chukchi Sea due to climate change

Authors

  • Pehuén Barzola Elizagaray Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas. Cátedra de Matemática, Facultad de Ciencias Agrarias
  • Marcelo Eduardo Alberto Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Cátedra de Matemática, Facultad de Ciencias Agrarias
  • Carlos Rubén Bageta Universidad Nacional de Cuyo. Cátedra de Matemática, Facultad de Ciencias Agrarias
  • Alicia Bevaqua Universidad Nacional de Cuyo. Cátedra de Matemática, Facultad de Ciencias Agrarias
  • Adrian Cecconato Universidad Nacional de Cuyo. Cátedra de Matemática, Facultad de Ciencias Agrarias
  • Marcela Garriga Universidad Nacional de Cuyo. Cátedra de Matemática, Facultad de Ciencias Agrarias
  • Marta Tirador Universidad Nacional de Cuyo. Cátedra de Matemática, Facultad de Ciencias Agrarias
  • Verónica Nodaro Universidad Nacional de Cuyo. Cátedra de Matemática, Facultad de Ciencias Agrarias
  • Melisa Enrique Universidad Nacional de Cuyo. Cátedra de Matemática, Facultad de Ciencias Agrarias
  • María Victoria Gayá Tosoni Universidad Nacional de Cuyo. Cátedra de Matemática, Facultad de Ciencias Agrarias

DOI:

https://doi.org/10.33044/revem.41053

Keywords:

Biomathematics, Difference equation system, Applied mathematics, Simulation

Abstract

This article provides an example of interdisciplinary work involving applied mathematics, ecology, and education. It describes the process of developing a population model for Pacific walruses (Odobenus rosmarus) based on biological and ethological data, as well as the effects of climate change on their environment. We describe the reasoning at each stage of the modeling step by step, then simulate it with the RStudio software and interpret the results. We believe that this work can serve as an example of the pedagogical tools required for the teaching of applied mathematics in relation to current environmental problems, allowing theoretical mathematical results to be given concrete meaning.

Downloads

Download data is not yet available.

References

ACIA (Arctic Climate Impact Assessment). (2004). Impacts of a warming arctic. Cambridge, United Kingdom: Cambridge University Press.

Beatty, W. S., Lemons, P. R., Everett, J. P., Lewis, C. J., Taylor, R. L., Lynn, R. J., ... others (2022). Estimating pacific walrus abundance and survival with multievent mark-recapture models. Marine Ecology Progress Series, 697, 167–182. doi: 10.3354/meps14131

Citta, J. J., Lowry, L. F., Quakenbush, L. T., Kelly, B. P., Fischbach, A. S., London, J. M., ... others (2018). A multi-species synthesis of satellite telemetry data in the pacific arctic (1987–2015): overlap of marine mammal distributions and core use areas. Deep Sea Research Part II: Topical Studies in Oceanography, 152, 132–153. doi: 10.1016/j.dsr2.2018.02.006

Fay, F. H. (1982). Ecology and biology of the pacific walrus, odobenus rosmarus divergens illiger. North American Fauna, 74, 1–279. doi: 10.3996/nafa.74.0001

Fay, F. H., Kelly, B. P., Gehnrich, P. H., Sease, J. L., y Hoover, A. A. (1984). Modern populations, migrations, demography, trophics, and historical status of the pacific walrus. University of Alaska and Fairbanks Institute of Marine Science.

Fernández-Arhex, V., y Corley, J. C. (2004). La respuesta funcional: una revisión y guía experimental. Ecología austral, 14(1), 83–93.

Frey, K. E., Moore, G., Cooper, L. W., y Grebmeier, J. M. (2015). Divergent patterns of recent sea ice cover across the bering, chukchi, and beaufort seas of the pacific arctic region. Progress in Oceanography, 136, 32–49. doi: 10.1016/j.pocean.2015.05.009

Garlich-Miller, J., MacCracken, J. G., Snyder, J., Meehan, R., Myers, M., Wilder, J. M., ... Matz, A. (2011). Status review of the pacific walrus (odobenus rosmarus divergens). US Fish and Wildlife Service.

Jay, C. V., Fischbach, A. S., y Kochnev, A. A. (2012). Walrus areas of use in the chukchi sea during sparse sea ice cover. Marine Ecology Progress Series, 468, 1–13. doi: 10.3354/meps10057

Krupnik, I., y Ray, G. C. (2007). Pacific walruses, indigenous hunters, and climate change: bridging scientific and indigenous knowledge. Deep sea research part II: topical studies in oceanography, 54, 2946–2957. doi: 10.1016/j.dsr2.2007.08.011

MacCracken, J. G. (2012). Pacific w alrus and climate change: observations and predictions. Ecology and evolution, 2(8), 2072–2090. doi: 10.1002/ece3.317

R-CoreTeam. (2022). R: A language and environment for statistical computing. Descargado de https://www.R-project.org/

RStudio-Team. (2022). RStudio: Integrated development for R, version 2022.7.1.554. Descargado de http://www.rstudio.com/

Speckman, S. G., Chernook, V. I., Burn, D. M., Udevitz, M. S., Kochnev, A. A., Vasilev, A., . . . Benter, R. B. (2011). Results and evaluation of a survey to estimate pacific walrus population size, 2006. Marine Mammal Science, 27(3), 514–553. doi: 10.1111/j.1748-7692.2010.00419.x

Udevitz, M. S., Taylor, R. L., Garlich-Miller, J. L., Quakenbush, L. T., y Snyder, J. A. (2013). Potential population-level effects of increased haulout-related mortality of pacific walrus calves. Polar Biology, 36, 291–298. doi: 10.1007/s00300-012-1259-3

Downloads

Published

2023-04-27

Issue

Section

Artículos de Matemática

How to Cite

[1]
Barzola Elizagaray, P. et al. 2023. Growth model of Pacific Walrus (Odobenus rosmarus) population after the decrease of summer ice in the Chukchi Sea due to climate change. Revista de Educación Matemática. 38, 1 (Apr. 2023), 28–42. DOI:https://doi.org/10.33044/revem.41053.