Simulations: tools for understanding an epidemic

Authors

  • Juan Pablo Pinasco Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática

DOI:

https://doi.org/10.33044/revem.29728

Keywords:

Simulations, Epidemics, Ordinary differential equations, SIR

Abstract

In this article, we show how simulations help us to explain the spread of an epidemic, evaluate the measures taken, and predict its evolution.

Downloads

Download data is not yet available.

References

Amster, P. (2020a). Qué modelo hay que tomar para seguir. Medium. Retrieved from

https://medium.com/@amster.pablo/qu%C3%A9-modelo-hay-que-tomar-para-seguir-2f9fd777c028

Amster, P. (2020b). Sobre modelos sir, o algo por el estilo. Revista de Educación Matemática, XXX.

Bak, P., Chen, K., & Tang, C. (1990). A forest-fire model and some thoughts on turbulence. Physics letters A, 147(5-6), 297–300.

Capanna, M. (2019). Critical asymptotic behaviour in the sir model. Markov Processes and Related Fields, 25(5), 763–796.

Chen, X., & Qiu, Z. (2020). Scenario analysis of non-pharmaceutical interventions on global covid-19 transmissions. Covid Economics: Vetted and Real-Time Papers, Centre for Economic Policy Research (CEPR), 46-47(7).

D’Elía, F., Fiore, A., Peretti, D., Seefeld, M., & Szifron, D. (2002). Los simuladores. Retrieved from https://telefe.com/los-simuladores (Telefe)

Drossel, B., & Schwabl, F. (1992). Self-organized critical forest-fire model. Physical review letters, 69(11), 1629.

Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, 115(772), 700–721.

Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014, 07). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. Retrieved from https://doi.org/10.1093/comnet/cnu016 doi: 10.1093/comnet/cnu016

Pei, X., & Mehta, D. (2020). #Coronavirus or #Chinesevirus?!: Understanding the negative sentiment reflected in tweets with racist hashtags across the development of covid-19. arXiv preprint arXiv:2005.08224.

Rhodes, C., & Anderson, R. (1996). Power laws governing epidemics in isolated populations. NATURE, 381, 13.

Scabini, L. F., Ribas, L. C., Neiva, M. B., Junior, A. G., Farfán, A. J., & Bruno, O. M. (2020). Social interaction layers in complex networks for the dynamical epidemic modeling of covid-19 in brazil. arXiv preprint arXiv:2005.08125.

Yabe, T., Tsubouchi, K., Fujiwara, N., Wada, T., Sekimoto, Y., & Ukkusuri, S. V. (2020). Non-compulsory measures sufficiently reduced human mobility in japan during the covid-19 epidemic. arXiv preprint arXiv:2005.09423.

Zhang, J., Litvinova, M., Liang, Y., Wang, Y., Wang, W., Zhao, S., . . . Yu, H. (2020). Changes in contact patterns shape the dynamics of the covid-19 outbreak in china. Science. Retrieved from https://science.sciencemag.org/content/early/2020/05/04/science.abb8001

doi: 10.1126/science.abb8001

Ziems, C., He, B., Soni, S., & Kumar, S. (2020). Racism is a virus: Anti-asian hate and counterhate in social media during the covid-19 crisis. arXiv preprint arXiv:2005.12423.

Downloads

Published

2020-07-30

Issue

Section

Artículos de Matemática

How to Cite

[1]
Pinasco, J.P. 2020. Simulations: tools for understanding an epidemic. Revista de Educación Matemática. 35, 2 (Jul. 2020), 35–50. DOI:https://doi.org/10.33044/revem.29728.