Remote laboratory for electromagnetic induction based on an industrial measurement device

Authors

  • Raúl E. Romero Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería
  • Sebastián A. Villar Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería
  • Bettina Bravo Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería

Keywords:

Remote laboratory, Electromagnetic induction, Measurement device, Magnetic sensor, Physics teaching

Abstract

This paper presents general characteristics of the construction and application of a remote laboratory whose main theme is electromagnetic induction. The design is based on a common problem in the industry, the detection of failures in rolling metal devices. It features mechanical elements, an experimental magnetic proximity sensor, a data acquisition system, and a user interface. The recording of the sensor output signal allows the analysis and interpretation of different electrical and/or mechanical phenomena. The mechanical system to be analyzed and the measurement device are integrated into a single experiment, which allows the construction of different activities ranging from the analysis of the physical phenomena involved to the analysis of the electrical signal of the sensor and its relationship with the analyzed mechanical system.

References

Alam, S., Cartledge, C. L. y Nelson, M. L. (2014). Support for various HTTP methods on the web. arXiv preprint arXiv:1405.2330

Arguedas-Matarrita, C. y Concari, S. B. (2018). Características deseables en un Laboratorio Remoto para la enseñanza de la física: indagando a los especialistas. Caderno Brasileiro de Ensino de Física, 35(3), 702-720.

Ávila-Camacho, F. J. y Moreno-Villalba, L. M. (2023). Internet de las Cosas (IoT) Retos para las Empresas en la era de la Industria 4.0. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 10(20), 10-16.

Azzedin, F. y Alhazmi, T. (2023). Secure data distribution architecture in IoT using MQTT. Applied Sciences, 13(4), 2515.

Https://doi.org/10.3390/app.13042515

Camacho, J. M. y Sosa, V. (2013). Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Revista mexicana de física E, 59(1), 8-17.

Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures. [Tesis doctoral, Universidad de California]. https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Haro, E., Guarda, T., Peñaherrera, A. O. Z. y Quiña, G. N. (2019). Desarrollo backend para aplicaciones web, servicios web restful: Node. js vs spring boot. Revista Ibérica de Sistemas e Tecnologias de Informação, E17, 309-321.

Manzanares, J. A., Bisquert, J., Garcia‐Belmonte, G. y Fernández‐Alonso, M. (1994). An experiment on magnetic induction pulses. American Journal of Physics, 62(8), 702-706.

Pini, A. (6 de agosto 2021). The Fundamentals of Proximity Sensors: Their Selection and Use in Industrial Automation.

https://www.digikey.com/en/articles/the-fundamentals-of-proximity-sensors-selection-and-use-industrial-automation.

Riad, I. F. (2023). Measuring g using magnetic induction. Physics Education, 58(3), 035008.

Romero, R. E., de la Vega, R. J., Rossi, S., Ferraggine, G., Greco, A. y García, M. (noviembre 2018). Device For Measuring Mechanical Variables for Fault Detection in Cement Production Kilns. Presentado en 26° Congreso Argentino de Control Automático, 7-9 de Junio, Universidad de Palermo, Buenos Aires.

Published

2023-12-01

How to Cite

Romero, R. E., Villar, S. A., & Bravo, B. (2023). Remote laboratory for electromagnetic induction based on an industrial measurement device. Journal of Physics Teaching, 35, 261–268. Retrieved from https://revistas.unc.edu.ar/index.php/revistaEF/article/view/43321