Thinking levels model and cognitive learning resources for physics teaching

Authors

  • Alejandro Pérez Rangel Institución Educativa Oficial Fagua, Secretaría de Educación Municipal, Vereda Fagua, Chía. Colombia.

DOI:

https://doi.org/10.55767/2451.6007.v33.n3.35999

Keywords:

Physics teaching, Learning resources, Thinking levels, High school education

Abstract

The present work proposes a thinking level model for teaching physics (TLM+Physics) that defines prior knowledge as learning resources, classified as epistemological resources (such as strongly rooted popular beliefs) and conceptual resources (such as the concepts of the theories of physics). The TLM+Physics defines the levels as notional, conceptual and formal, in terms of the type of resources the student uses and the priority with which he uses them. To illustrate the model, a case study is made with final year high school students, inquiring some ideas about what they know about force concept. The results show that the students are at a notional level, that is, they use their epistemological resources as a priority over their conceptual resources (force con-cept from Newtonian mechanics). The model defines the thinking levels in a general way, which gives it versatility, since it can be applied in physics teaching in secondary or higher education and can even be extended to the field teaching natural sciences in general (TLM+Physics, TLM+Chemistry and TLM+Biology) or math teaching (TLM+Math).

References

Bao, L., & Redish, E. F. (2006). Model analysis: Representing and assessing the dynamics of student learning. Physical Review Special Topics-Physics Education Research, 2(1), 010103.

Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., ... & Wang, Y. (2009). Learning and scientific reasoning. Science, 323(5914), 586-587.

Barbosa, L. H. (2008). Los experimentos discrepantes en el aprendizaje activo de la física. Latin-American Journal of physics Education, 2(3), 24.

Caballero, M. D., Greco, E. F., Murray, E. R., Bujak, K. R., Jackson Marr, M., Catrambone, R. & Schatz, M. F. (2012). Com-paring large lecture mechanics curricula using the Force Concept Inventory: A five thousand student study. American Journal of Physics, 80(7), 638-644.

Clement, J., Brown, D. E., & Zietsman, A. (1989). Not all preconceptions are misconceptions: finding ‘anchoring con-ceptions’ for grounding instruction on students’ intuitions. International journal of science education, 11(5), 554-565.

De Zubiría, M., & De Zubiría, J. (1992). Biografía del pensamiento. Cooperativa Editorial Magisterio.

Ding, L., Chabay, R., Sherwood, B., & Beichner, R. (2006). Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Physical review special Topics-Physics education research, 2(1), 010105.

di Sessa, A. A. (1993). Toward an epistemology of physics. Cognition and instruction, 10(2-3), 105-225.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Acad-emy of Sciences, 111(23), 8410-8415.

Guisasola, J., Furió, C., & Ceberio, M. (2008). Science education based on developing guided research. Science educa-tion in focus, 173-201.

Guisasola, J., Hartlapp, M., Hazelton, R., Heron, P., Lawrence, I., Michelini, M. & Zuza, K. (2016). Content-Focused Re-search for Innovation in Teaching/Learning Electromagnetism: Approaches from GIREP Community. In Insights from Research in Science Teaching and Learning (pp. 89-105). Springer, Cham.

Guisasola, J., Zuza, K., & Sagastibeltza, M. (2019). Una propuesta de diseño y evaluación de secuencias de enseñanza-aprendizaje en Física: el caso de las leyes de Newton. Revista de Enseñanza de la Física, 31(2), 57-69.

Hammer, D. (1996). Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and intentions. The journal of the learning sciences, 5(2), 97-127.

Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68(S1), S52-S59.

Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. Personal epistemology: The psychology of beliefs about knowledge and knowing, 169190.

Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. Transfer of learning from a modern multidisciplinary perspective, 89.

Heckler, A. F., & Sayre, E. C. (2010). What happens between pre-and post-tests: Multiple measurements of student understanding during an introductory physics course. American Journal of Physics, 78(7), 768-777.

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The physics teacher, 30(3), 141-158.

Hogan, K. (1999). Relating students' personal frameworks for science learning to their cognition in collaborative con-texts. Science education, 83(1), 1-32.

Mazur, E. (1997, March). Peer instruction: getting students to think in class. In AIP Conference Proceedings (Vol. 399, No. 1, pp. 981-988). American Institute of Physics.

McDermott, L. C., & Redish, E. F. (1999). Resource letter: PER-1: Physics education research. American journal of physics 67(9), 755-767.

Minstrell, J. (1992). Facets of students’ knowledge and relevant instruction. Research in physics learning: Theoretical issues and empirical studies, 110-128.

Moreira, M. A. (2012). ¿Al final, qué es el aprendizaje significativo? Qurriculum: Revista de Teoría, Investigación y Práctica Educativa 25, 29-56. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=3943478

Moreira, M. A., & Greca, I. M. (2003). Cambio conceptual: análisis crítico y propuestas a la luz de la teoría del aprendi-zaje significativo. Ciência & Educação (Bauru), 9(2), 301-315.

Notaros, B. M. (2002). Concept inventory assessment instruments for electromagnetics education. In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 1, pp. 684-687). IEEE.

Pérez, J. (2010). Caracterización de los Procesos de Comprensión: Descripciones de un Grupo de Estudiantes sobre un Experimento con Fotones. (Tesis de Pregrado). Universidad Pedagógica Nacional. Bogotá, Colombia.

Piaget, J., & Inhelder, B. (1948). La représentation de l'espace chez l'enfant.

Pozo, J. I. (1989). Teorías cognitivas del aprendizaje. Ediciones Morata.

Ramos, J. L. S., Dolipas, B. B., & Villamor, B. B. (2013). Higher order thinking skills and academic performance in physics of college students: A regression analysis. International Journal of Innovative Interdisciplinary Research, 4(48-60).

Redish, E. F. (2014). Oersted Lecture 2013: How should we think about how our students think?

Rosemary Russ et al. (2008) Recognizing Mechanistic Reasoning in Student Scientific Inquiry: A Framework for Dis-course Analysis Developed from Philosophy of Science.

Sabella, M. S., & Redish, E. F. (2007). Knowledge organization and activation in physics problem solving. American Journal of Physics, 75(11), 1017-1029.

Skinner, B. F. (1965). Review Lecture-The technology of teaching. Proceedings of the Royal Society of London. Series B. Biological Sciences, 162(989), 427-443.

Strike, K. A., & Posner, G. J. (1982). Conceptual change and science teaching. European Journal of Science Education, 4(3), 231-240.

Talero, P., Mora, C., Organista, O., & Barbosa, L. H. (2013). Diagrama semi-cuantitativo sobre la evolución del aprendi-zaje de un micro-contenido físico. Lat. Am. J. Phys. Educ. Vol, 7(3), 418.

Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and instruction, 4(1), 45-69.

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard university press.

Zembylas, M. (2005). Three perspectives on linking the cognitive and the emotional in science learning: Conceptual change, socio-constructivism and poststructuralism.

Published

2021-12-12

How to Cite

Pérez Rangel, A. . (2021). Thinking levels model and cognitive learning resources for physics teaching. Journal of Physics Teaching, 33(3), 115–128. https://doi.org/10.55767/2451.6007.v33.n3.35999