A proposal for the design and evaluation of teaching-learning sequences in Physics: the case of Newton's Laws

Authors

  • Jenaro Guisasola
  • Kristina Zuza
  • Mikel Sagastibeltza

DOI:

https://doi.org/10.55767/2451.6007.v31.n2.26948

Keywords:

Teaching-Learning Sequences, Sequence assessment and re-design, Teaching of work and energy, Introductory University Physics

Abstract

We present a proposal for the design and evaluation of Teaching-Learning Sequences (TLS) at the highschool and university levels. Relevant contributions in the design of teaching sequences based on the DesignBased Research methodology are taken into account and the relation of these TLSs to students’ learning is discussed. We present the iterative Design-Based Research methodology that allows TLSs to be evaluated and redesigned. The context of our implementation and evaluation is an innovative Physics course for students in the first year after post-compulsory Secondary education in Spain. It presents the concretion of each phase of the Design-Based Research (DBR) methodology, explaining how the sequence is designed and how it is evaluated. The results obtained in the first year of implementation are encouraging in terms of the learning achieved by the students. The strengths and weaknesses of the TLS are analyzed after this first implementation

References

Ametller, J., Leach, J., y Scott, P. (2007). Using perspectives on subject learning to inform the design of
subject teaching: an example from science education. Curriculum Journal, 18(4), 479–492.

Andersson, B. y Bach, F. (2005). On designing and evaluating teaching sequences taking geometrical
optics as an example. Science Education, 89(2), 196-218.

Anderson, T. y Shattuck, J. (2012). Design based research: A decade of progress in education research?
Educational Researcher, 41(1), 16–25.

Arons, A. B. (1999). Development of energy concepts in introductory physics course. American Journal
of Physics, 67(12), 1063-1067.

Bell, P. (2004). On the theoretical breadth of design-based research in education. Educational Psychologist,
39(4), 243–253.

Buty, C., Tiberghien, A., y Le Maréchal, J. (2004). Learning hypotheses and an associated to design and
to analyze teaching learning sequences. International Journal of Science Education, 26(5), 579–604.

Carr, W. y Kemmis, S. (1986). Becomming critical. In Education, knowledge and action research. London:
Falmer.

Carrascosa Alís, J., Perales, E., Rey Cubero, A., y Rosa Cintas, S. (2017). La enseñanza de las fuerzas.
Dificultades y orientaciones en educación secundaria.

Chabay, R. W. y Sherwood, B. A. (2011). Matter and Interactions vol I, 3º ed. John Wiley & Sons.

Chevallard, Y. (1991). La trasposition didactique (Didactical transposition) (2nd ed.). Grenoble, France:
La Pensée Sauvage.

Coelho, R. L. (2010). On the concept of force: How understanding its history can improve physics teaching.
Science & education, 19(1), 91.

Davis, E., Palincsar, A. S., Arias, A. M., Bismack, A. S., Marulis, L., y Iwashyna, S. (2014). Designing
educative curriculum materials: A theoretically and empirically driven process. Harvard Educational

Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational
inquiry. Educational Researcher, 32(1), 5–8.

Duit, R., Gropengieber, H., Kattmann, K., Komorek, M., y Parchmann, I. (2012). The Model of Educational
Reconstruction- A Framework for Improving Teaching and Learning Science. En D. Jorde y J.

Dillon (Eds.), Science Education Research and Practice in Europe Retrospective and Prospective (pp.
13–38). Rotterdam, The Netherland: Sense Publishers.

Easterday, M., Rees Lewis, D., y Gerber, E. (2014). Design-based research process: Problems, phases and
applications. En J. L. Polman, E. A. Kyza, D. K. O’Neill, I. Tabak, W. R. Penuel, A. S. Jurow, … L.
D’Amico (Eds.), Proceedings of International Conference of Learning Sciences (pp. 317–324). Boulder,
CO: International Society of the Learning Sciences.

Eisenbud, L. (1958). On the classical laws of motion. American Journal of Physics, 26(3), 144-159.

Ellis, B. D. (1962). Newton's Concept of Motive Force. Journal of the History of Ideas, 23(2), 273-278.

Fishman, B. J. y Krajcik, J. (2003). What does it mean to create sustainable science curriculum innovations?
A commentary. Science Education, 87(4), 564–573.

Furió, C. y Carnicer, J. (2002). El desarrollo profesional del profesor de ciencias mediante tutorías de
grupos cooperativos. Estudio de ocho casos. Enseñanza de Las Ciencias, 20(1), 47–73.

Galili, I. y Tseitlin, M. (2003). Newton's First Law: Text, translations, interpretations and physics education.
Science y Education, 12(1), 45-73

Gil, D. y Carrascosa, J. (1994). Bringing pupils’ learning closer to a scientific construction of knowledge:
A permanent feature in innovations in science teaching, Sci. Edu. 78; 301.

Guisasola, J., Furió, C. y Ceberio, M. (2008). Science Education based on developing guided research.
Science Education in Focus, 55-85.

Guisasola, J., Almudi, J. M., Ceberio, M. y Zubimendi, J. L. (2009) Diseño y evaluación de secuencias de
instrucción basadas en la investigación para la introducción de campos magnéticos, International Journal
of Science and Mathematics Education, 7(4), 699-722.

Guisasola, J., Zuza, K., Ametller, J., y Gutierrez-Berraondo, J. (2017). Evaluating and redesigning teaching
learning sequences at the introductory physics level. Physical Review Physics Education Research,
13(2), 020139.

Gutierrez-Berraondo, J., Zuza, K., Zavala, G., y Guisasola, J. (2018). University students' ideas on the
relations between work and energy in Mechanics in introductory Physics courses. Revista Brasileira de
Ensino de Física, 40(1).

Hestenes, D., Wells, M., y Swackhamer, G. (1992). Force concept inventory. The physics teacher, 30(3),
141-158.

Hewitt, P. G. (2002). Conceptual physics. Pearson Educación.

Hierrezuelo, J. y Montero, A. (1991). La ciencia de los alumnos: su utilización en la didáctica de la Física
y Química. Málaga: Elzevir.

Juuti, K. y Lavonen, J. (2006). Design-Based Research in Science Education: One Step towards Methodology
NorDiNa: Nordic Studies in Science Education. Science Education, 4; 54–68.

Kortland, K. y Klaassen, K. (2010). Designing theory-based teaching-learning sequences for science
education. Utrechet: CDBeta Press.

Leach, J., Scott, P., Ametller, J., Hind, A., y Lewis, J. (2006). Improving Subject Teaching Lessons from
Research in Science Education. Routledge.

Leach, J. y Scott, P. (2002). Designing and Evaluating Science Teaching Sequences: An approach Drawing
upon the Concept of Learning Demand and a Social Constructivist Perspective on Learning. Studies
in Sciences Education, 38(1), 115–142.

Lijnse, P. L. y Klaassen C. W. J. M. (2004). Didactical structures as an outcome of research on teachinglearning
sequences? Int. J. Sci. Educ 26; 537.

Martínez-Torregrosa, J., Alemany, F. S., Blanco, J. L. D., Cubero, A. R., y Cintas, S. R. (2016). La enseñanza
problematizada de la física cuántica en el nivel introductorio. Una propuesta fundamentada. Revista
de Enseñanza de la Física, 28(2), 77-100.

McDermott, L. C. y Shaffer, P. S. (1992). Research as a guide for curriculum development, Part II: Design
of instructional strategies, Am. J. Phys. 60; 1003.

Meheut, M. y D. Psillos, D. (2004). Teaching-learning sequences: Aims and tools for science education
research, Int. J. Sci. Educ. 26; 515.

Nieveen, N. (2009). Formative evaluation in educational design research. En An introduction to educational
design research (pp. 89–101). Enschede: SLO.

Pfundt, H. y Duit, R. (1994). Bibliography. Students’ Alternative Frameworks and Science Education
(4th Edition). Kiel: IPN.

Osuna García, L., Martínez-Torregrosa, J., Carrascosa Alís, J., y Carbonell, R. V. (2007). Planificando la
enseñanza problematizada: el ejemplo de la óptica geométrica. Enseñanza de las ciencias: revista de
investigación y experiencias didácticas, 25(2), 277-294.

Pintó, R. (2005). Introducing curriculum innovations in science: Identifying teachers’ transformations and
the design of related teachers’ education. Science Education, 89(1), 1–12

Psillos, D. y Kariotoglou, P. (2016). Iterative design of teaching-learning sequences: Introducing the
science of materials in European schools. Dordrecht, The Netherland: Springer.

Savinainen, A., Mäkynen, A., y Nieminen, P. (2017). The Effect of Using a Visual Representation Tool in
a Teaching Learning Sequence for Teaching Newton’s Third Law. Research in Science Education, 119–
135.

Schoenfeld, H. A. (2002). How can we examine the connections between teachers’ world views and their
educational practices? Issues in education. Contributions from Educational Phycology, 8(2), 229–232.

Sebastiá, B. M. y Martínez-Torregrosa, J. (2005). Preservice elementary teachers’ conceptions of the SunEarth
model: A proposal of teaching-learning sequences. Astronomy Education Review, 4(1), 121–126.
Tiberghien, A., Vince, J., y Gaidioz, P. (2009). Design based Research: Case of a teaching sequence on
mechanics. International Journal of Science Education, 31(7), 2275–2314.

Viennot, L. (1979). Spontaneous reasoning in elementary dynamics. European Journal of Science Education,
1(2), 205-221.

Zuza, K., Almudi, J. M., Leniz, A., y Guisasola, J. (2014). Adressing students’ difficulties with Faraday’s
law: A guided problem solving approach. Physical Review Special Topics- Physics Education Research,
10(1), 1–16.

Published

2019-12-20

How to Cite

Guisasola, J. ., Zuza, K., & Sagastibeltza, M. . (2019). A proposal for the design and evaluation of teaching-learning sequences in Physics: the case of Newton’s Laws. Journal of Physics Teaching, 31(2), 57–69. https://doi.org/10.55767/2451.6007.v31.n2.26948