Teaching introductory quantum physics through a problem based unit. A reasoned proposal

Authors

  • Joaquín Martínez Torregrosa
  • Francisco Savall Alemany
  • Josep Lluís Domènech Blanco
  • Alexandra Rey Cubero
  • Sergio Rosa Cintas

DOI:

https://doi.org/10.55767/2451.6007.v28.n2.15813

Keywords:

Problem based teaching, Quantum physics, Photon, Quantum, Model

Abstract

Didactic research has not reached a consensus on how introductory quantum physics courses should be addressed, both in relation to the content to be taught as in the physical interpretation of key models such as the wave-particle duality. In the absence of consensus, we conducted a historical and didactic study aiming at establishing the key ideas of a quantum model of emission and absorption of radiation with sufficient explanatory power to make it worthwhile. We also identified the key ideas of a model for quantums that can explain the behaviour of electrons and photons and which allow us to overcome the crisis produced by the introduction of the quantum model of emission and absorption of radiation. Taking into account the problems that historically led to the establishment of these models, we designed the problem based unit for teaching quantum physics in high school that we present in this article, paying special attention to the great steps that drive students to build the proposed models.

References

Bohr, N. (1913a). On the constitution of atoms and molecules. Philosophical Magazine, 26, 1-25.

Bohr, N. (1913b). On the constitution of atoms and molecules. Part II. Systems containing only a single nucleus. Philosophical Magazine, 26, 476-502.

Bohr, N. (1964). Física atómica y conocimiento humano. Madrid: Aguilar.

Budde, M., Niedderer, H., Scott, P. y Leach, J. (2002a). 'Electronium': a quantum atomic teaching model. Physics Education, 37 (3), 197-203.

Budde, M., Niedderer, H., Scott, P. y Leach, J. (2002b). The quantum atomic model 'Electronium': a successful teaching tool. Physics Education, 37 (3), 204-210.

Cheong, Y. W. y Song, J. (2014). Different levels of the meaning of wave-particle duality and a suspensive perspective on the intepretation of quantum theory. Science and Education, 23 (5), 1011-1030.

Compton, A. H. (1927). X-rays as a branch of optics. Nobel lecture. http://nobelprize.org/nobel_prizes/ physics/laureates/1927/compton-lecture.pdf

De Broglie, L. (1929). The wave nature of the electron. Nobel lecture. http://nobelprize.org/nobel_prizes/physics/laureates/1929/broglie-lecture.html

De Ronde, C. (2015). Colonialidad del saber/poder en la educación y el conocimiento científico-tecnológico en América Latina. El caso de la mecánica cuántica en la investigación y la formación universitaria. Revista de Enseñanza de la Física, 26 (número extra), 355-363.

Einstein, A. (1917). Sobre a teoria quàntica da radiaçao. En Revista Brasileira de Ensino de Física. (2005). 27 (1), 93-100.

Einstein, A. e Infeld, L. (1986). La evolución de la Física. Barcelona: Biblioteca Científica Salvat.

Escalada, L. T., Rebello, N. S. y Zollman, D. A. (2004). Student explorations of quantum effects in LEDs and luminescent devices. The physics teacher, 42 (3), 173-179.

Feynman, R. P. (2000). El carácter de la ley física. Barcelona: Tusquets.

Fernández, P., González, E. y Solbes, J. (2005). De los corpúsculos de luz al efecto fotoeléctrico. Una propuesta didáctica con base en la discusión de modelos. Revista de Enseñanza de la Física, 18 (1), 69-80.

Fischler, H. y Lichfeld, M. (1992). Modern Physics and students' conceptions. International Journal of Science Education, 14 (2), 181-190.

Fischler, H. (1999). Introduction to quantum physics-development and evaluation of a new course. Papers presented at the annual meeting National Association for Research and Science Teaching. http://perg.phys.ksu.edu/papers/narst/QM_papers.pdf

Fletcher, P. y Johnston, I. (1999). Quantum mechanics: exploring conceptual change. Papers presented at the annual meeting National Association for Research Science Teaching.http://www.physics.umd.edu/perg/qm/qmcourse/NewModel/research/qm_narst_full.pdf

Gribbin, J. (1986). En busca del gato de Schrodinger. Barcelona: Salvat Editores.

Hadzidaki, P. (2008). The Heisenberg microscope: a powerful instructional tool for promoting meta-cognitive and meta-scientific thinking on quantum mechanics ant the “nature of science”, Science and education, 17 (6), 613-639.

Heilbron, J. L. (2010). Niels Bohr. L'estructura i la filosofiadelsatoms. Vic: Eumo.

Heisenberg, W. (1933) The development of quantum mechanics. Nobel lecture. http://nobelprize.org/nobel_prizes/physics/laureates/1932/heisenberglecture.html

Heisenberg, W. (1972). Diálogos sobre la Física Atómica. Madrid: La Editorial Católica.

Holton, G. (1982). Ensayos sobre el pensamiento científico en la época de Einstein. Madrid: Alianza Universidad.

Holton, G. y Brush, S. (1987). Introducción a los conceptos y teorías de las ciencias físicas. Mollet del Valles, Barcelona: Reverte.

Ivanjek, L., Shaffer, P. S., McDermott, L. C., Planinic, M., y Veza, D. (2015a). Research as a guide for curriculum development: An example from introductory spectroscopy. I. Identifying student difficulties with atomic emission spectra. American Journal of Physics, 83 (1), 85-90.

Ivanjek, L., Shaffer, P. S., McDermott, L. C., Planinic, M., yVeza, D. (2015b). Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing students difficulties with atomic emission spectra. American Journal of Physics, 83 (2), 171-178.

Jammer, M. (1966).The conceptual development of quantum mechanics. Ney York: McGraw Hill.

Johnston, I. D., Crawford, K. y Fletcher, P. (1998).Students difficulties in learning quantum mechanics. International Journal of Science Education, 20 (4), 427-446.

Kalkanis, G., Hadzidaki, P. yStavrou, D. (2003).An instructional model for a radical conceptual change towards quantum mechanics concepts. Science education, 87 (2),257-280.

Kompaneyetz, A. S. (1971).Qué es la mecánica cuántica. Barcelona: Vicens Vives.

Kumar, M. (2011).Quantum. Barcelona: Kairos.

Lindley, D. (2008). Incertidumbre. Barcelona: Ariel.

Martínez Sancho, V. (1992). Fonaments de Física II. Barcelona: Enciclopèdia Catalana.

Mckagan, S. B., Perkins, K. K., Dubson, M., Malley, C., Reid, S., Lemaster, R. y Wieman, C. E. (2008). Developing and researching PhET simulations for teaching quantum mechanics. American Journal of Physics. 76 (4 y 5), 406-417.

Michelini, M., Ragazzon, R., Santi, L. y Stefanel, A. (2000). Proposal for quantum physics in secondary school. Physics Education, 35 (6), 405-410.

Niaz, M. y Marcano, C. (2012). Reconstruction of wave-particle duality and its implications for general chemistry textbooks. Reseña en Berger, K. C. (2013).Science and Education, 22 (8), 2031-2033.

Olsen, V. (2002).Introducing quantum mechanics in the upper secondary school: a study in Norway. International Journal of Science Education, 24 (6), 565-574.

Osuna, L., Martínez Torregrosa, J., Carrascosa, J. y Verdú, R. (2007). Planificando la enseñanza problematizada: el ejemplo de la óptica en educación secundaria. Enseñanza de las Ciencias, 25 (2), 277-294.

Pais, A. (1984), 'El señor es sutil...' La ciencia y la vida de Albert Einstein. Barcelona: Ariel.

Petri, J. y Niedderer, H. (1998). A learning pathway in high-school level quantum atomic physics. International Journal of Science Education, 20 (9), 1075-1088.

Pospiech, G. (1999). Teaching the EPR paradox at high school? Physics Education, 34 (5), 301-316.

Pospiech, G. (2000). Uncertainty and complementarity: the heart of quantum physics. Physics Education, 35 (6), 393-399.

Rebello, N. S. y Zollman, D. (1999). Conceptual undestanding of quantum mechanics after using hands-on and visualization instructional materials.Papers presented at the annual meeting National Association for Research in Science Teaching. March, 1999.

Rutherford, F. J., Holton, G. y Watson, F. G. (1970). Project Physics. California: Holt, Rinehart and Winston.

Sanchez Ron, J. M. (2001). Historia de la física cuántica. I. El periodo fundacional (1860-1926). Barcelona: Critica.

Savall, F., Domènech, J. L. y Martínez Torregrosa, J. (2013a). La introducción del concepto de fotón en bachillerato. Revista Brasileira de Ensino de Fisica, 35 (2), 2404.

Savall, F., Domènch, J. L. y Martínez Torregrosa, J. (2013b). ¿Los profesores de Física y Química disponen de un modelo que explique la formación de los espectros atómicos? IX Congreso Internacional sobre Investigación en Didáctica de las Ciencias. 3237-3242.

Savall, F., Domènech, J. L. y Martínez Torregrosa, J. (2014). El espectroscopio cuantitativo como instrumento para la construcción y uso de modelos de emisión y absorción de radiación en física cuántica. Revista Brasileira de Ensino de Fisica, 36 (4), 4302.

Savall, F., Domènech, J. L. y Martínez Torregrosa, J. (2015). ¿Cómo se emite y absorbe radiación? Unidad para la enseñanza de la física cuántica extraída de Savall, F. (2015). L'ensenyamentproblematitzat de la física quàntica en batxilleratcom a instrument de millora de l'aprenentatge. Tesis Doctoral. Universidad de Alicante.

Savall, F., Domènech, J. L., Guisasola, J. y Martínez Torregrosa, J. (2016). Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation. Physical Review Physics Education Research, 12, 010132.

Solbes, J. y Sinarcas, V. (2010). Una propuesta para la enseñanza de la física cuántica basada en la investigación en didáctica de las ciencias. Revista de Enseñanza de la Física, 23 (1), 57-84.

Steinberg, R. N., Oberem, G. E. y McDermott, L. C. (1996). Development of a computer-based tutorial on the photoelectric effect. American Journal of Physics, 64 (11), 1370-1379.

Steinberg, R., Wittmann, M. C. Bao, L. yRedish, E. F. (1999). The influence of student understanding of classical physics when learning quantum mechanics. Papers presented at the annual meeting National Association for Research in Science Teaching. March, 1999.

Taber, K. S. (2001). When the analogy breaks down: modelling the atom on the solar system. PhysicsEducation, 36 (3), 222-226.

Tarrach, R. (1987). Mecànica quàntica: discussió d'algunes idees-clau. En Bernabeu, J., Tarrach, R., Bramon, A., Galindo, A. y Oliva, A. (1987). La revolució quàntica. Barcelona: Fundacio Caixa de Pensions.

Thacker, B. A. (2003). A study of the nature of students' models of microscopic processes in the context of modern physics experiments. American Journal of Physics, 71 (6), 599-606.

Verdú, R y Martínez Torregrosa, J. (2004). La estructura problematizada de los temas y cursos de Física y Química como instrumento de mejora de su enseñanza y aprendizaje. Tesis Doctoral. Universitat de València. En http://rua.ua.es/dspace/handle/10045/2782

Vokos, S., ShaffeR, P. S., Ambrose, B. S. y McDermott, L. (2000). Student understanding of the wave nature of matter: diffraction and interference of particles. American Journal of Physics, 68 (S42).

Wuttiprom, S., Sharma, M. D., Johnston, I. D., Chitaree, R. y Soankwan, C. (2007). Development and use of a conceptual survey in introductory quantum physics. International Journal of Science Education, 31 (5), 631-654.

Zollman, D. A., Rebello, N. S. y Hogg, K. (2002). Quantum mechanics for everyone: Hands-on activities integrated with technology. American Journal of Physics, 70 (3), 252-259.

Published

2016-12-07

How to Cite

Martínez Torregrosa, J., Savall Alemany, F., Domènech Blanco, J. L., Rey Cubero, A., & Rosa Cintas, S. (2016). Teaching introductory quantum physics through a problem based unit. A reasoned proposal. Journal of Physics Teaching, 28(2), 77–100. https://doi.org/10.55767/2451.6007.v28.n2.15813

Issue

Section

Teaching Proposals