Learning wave optics in a physics laboratory for engineering

Authors

  • Silvia Bravo
  • Marta Pesa

DOI:

https://doi.org/10.55767/2451.6007.v28.n2.15812

Keywords:

Wave optics, Experimental activities, Vergnaud’s schemes, Skills development

Abstract

This paper shows the results of a research referred to the conceptual learning of light interference and diffraction in the context of a physics laboratory for engineering careers. The design comprehends an experimental didactic proposal and the analysis and interpretation of the results obtained by the students in the engineering basic cycle. The theoretical framework used for this research is Vergnaud’s theory of conceptual fields. This study involves the students´ cognitive development during the implementation of the didactic proposal and the evaluation results through their evolution schemes. The results obtained in the cognitive development study during all activities, centered on three students show that the initial schemes on the optical beams were focused and they gradually evolve towards schemes centered on the wave model as the experimental activities were developed. The individual evaluation results show that more than half of the students have achieved an evolution on their initial schemes. Consequently they have developed the necessary competencies to deal successfully with experimental situations competencies.

References

Abad Más, L., Ruiz-Andrés, R., Moreno-Madrid, F., Herrero, R. y Suay, E. (2013). Intervención psicopedagógica en el trastorno de déficit de atención/hiperactividad, Revista Neurología, 57 (Supl 1): S193-S203.

Ambrose, B., Heron, P., Vokos, S. y Mc Dermott, L. (1999a). Students understanding of light as an electromagnetict wave: Relating the formalism to physical phenomena. American Journal of Physics, 67(10), 891-898.

Ambrose, B., Schaffer, P., Steinberg, R. yMc Dermott, L. (1999b). An investigation of student understanding of single-slit diffraction and double-slit interference. American Journal of Physics, 67(2), 146–155.

Bravo, S. y Pesa, M. (2015). Diseño de una propuesta didáctica para el aprendizaje significativo de los conceptos de interferencia y difracción en el laboratorio de física. Actas del VII Encuentro Internacional sobre Aprendizaje Significativo, 511-525. Burgos. Disponible en http://www.xinix.es/jornadas/actas.pdf

Bravo, S. (2007). Concepciones de estudiantes referidas a fenómenos ondulatorios. (Tesis de Maestría). Universidad Nacional de Tucumán. San Miguel de Tucumán. Argentina.

Beneitone P., Esquetini C., Gonzalez J., Maletá M., Siufi G., Wagenaan R. (2007). Reflexiones y perspectivas de la Educación Superior en América Latina. Informe Final Proyecto Tuning-América Latina 2004-2007. Universidad de Deusto. Bilbao. Disponible en

http://tuning.unideusto.org/tuningal/index.php?option=com_docman&Itemid=191&task=view_category&catid=22&order=dmdate_published&ascdesc=DESC Último acceso: 12/03/2016.

Colin P. y Viennot L. (2000). Les difficultés d'étudiants post-bac pour une conceptualisation cohérente de la diffraction et de l'image optique. Didaskalia, (17), 29-54.

Colin, P., y Viennot, L. (2001). Using two models in optics: Students’ difficulties and suggestions for teaching. American Journal of Physics 69, S36 (2001), doi: 10.1119/1.1371256

Colin, P., y Viennot, L. (2002). Géométrie, phase, cohérence: Questions d’optique. Bulletin de la Société Française de Physique, (137), 30.

Disponible en http://sfp.in2p3.fr/bulletin/article%20COLIN%20VIENNOT.pdf Último acceso: 14/03/2016.

Galili, I. (2014). Teaching Optics: A Historico-Philosophical Perspective. In Matthews, M(ed.) International Handbook of Research in History, Philosophy and Science Teaching. Springer.

Hecht, E. yZajac, A. (2000). Optica. Edit. Addison-Wesley Iberoamericana S.A.

Hernández Sampieri, R., Fernández Collado, C., Baptista Lucio, M. (2010). Metodología de la investigación. México: Mc Graw Hill.

Halliday, D., Resnick, R., Krane, K. (1998). Física. Vol. 2. México: CECSA.

Hull, L. (2011). Historia y Filosofía de la ciencia. Barcelona: Crítica.

Lazarovitz, R. yTamir, P. (1994). Research on using laboratory instruction in science. In Dorothy L. Gabel (ed.) Handbook of Research on Science Teaching and Learning. Nueva York: Macmillan.

Matthews, M. (1994). Historia, filosofía y enseñanza de las ciencias: la aproximación actual. Enseñanza de las ciencias,12(2), 255-27.

Maurines L. y Mayrargue A. (2007) Utiliser l’histoire de l’optique dans l’enseignement : pourquoi ? comment ?, Journées nationales de l’UdPPC "Paris de Sciences", Paris. Disponible en:

http://udppc.asso.fr/paris2007/actes/index.php?page=fiche_ev&num_ev=185

Maurines, L. (2002). Le raisonnement des étudiants dans la physique des ondes [The students’ reasoning in wave physics]. Bulletin de la Société Française de Physique, décembre 2002–2003, (137), 30. Disponible en http://sfp.in2p3.fr/bulletin/Maurines%20corrigi.PDF

Maurines, L. (2010). Geometrical Reasoning in Wave Situations: The case of light diffraction and coherent illumination optical imaging. International Journal of Science Education, 32(14), 1895–1926.

McDermott, L., Shaffer, P. and the Physics Education Group at the University of Washington, (2002). Tutorials in Introductory Physics. Upper Saddle River, NJ: Prentice Hall.

McDermott, L. (2000). Bridging the gap between teaching and learning: the role of physics education research in the preparation of teachers and majors. Investigações em Ensino de Ciências,5(3), 157-170.

McDermott, L. (2001). Oersted Medal Lecture 2001: ‘‘Physics Education Research—The Key to Student Learning’’. American Journal of Physics,69(11), 1127-1137.

Pesic, P. (2007). El cielo en una botella. Historia de la pesquisa sobre el azul del firmamento. Barcelona: Gedisa.

Serway R. y Jewett J. (2005). Física. Volumen II. Ed. Thomson.

Tipler, P. (1996). Física. España: Reverté.

Vergnaud, G. (1990). La théorie des champs conceptuels. Récherches en Didactique des Mathematiques, 10(23), 133-170.

Vergnaud, G. (1994). Multiplicative conceptual field: what and why? In Guershon, H. and Confrey, J. (Eds.) The development of multiplicative reasoning in the learning of mathematics (41-59). Albany, N.Y.: State University of New York Press.

Vergnaud, G. (2007) ¿En qué sentido la teoría de los campos conceptuales puede ayudarnos para facilitar el aprendizaje significativo? Investigações em Ensino de Ciências,12(2), 285-302.

Vergnaud, G. (2013) ¿Por qué la teoría de los campos conceptuales? Infancia y Aprendizaje, 36(2), 131-161.

Wosilait, K., Heron, P., Schaffer, P. yMc Dermott, L. (1999). Adressingstudents’difficulties in applying a wave model to the interference and diffraction of light. Physics Education Research: A supplement to the American Journal of Physics, 67(7), S5–S15.

Young, H., Freedman, R. (2013). Física Universitaria. Vol 2. Editorial Pearson.

Published

2016-12-07

How to Cite

Bravo, S., & Pesa, M. (2016). Learning wave optics in a physics laboratory for engineering. Journal of Physics Teaching, 28(2), 51–76. https://doi.org/10.55767/2451.6007.v28.n2.15812

Issue

Section

Teaching Proposals