What is the EPR paradox? A didactic reconstruction of the article by Einstein, Podolsky and Rosen

Authors

  • Ramon Wagner Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500 - Caixa Postal 15051 - CEP 91501-970 - Porto Alegre, RS, Brasil.
  • Alfonso Werner da Rosa 2Faculdade de Educação, Universidade de Passo Fundo, BR 285, São José – CEP 99052-900 – Passo Fundo, RS, Brasil.
  • Nathan Willig Lima Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500 - Caixa Postal 15051 - CEP 91501-970 - Porto Alegre, RS, Brasil.
  • Matheus Monteiro Nascimento Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500 - Caixa Postal 15051 - CEP 91501-970 - Porto Alegre, RS, Brasil.

DOI:

https://doi.org/10.55767/2451.6007.v33.n3.36001

Keywords:

EPR, Quantum theory, History and philosophy, Primary sources, Entanglement

Abstract


The objective of this work is to provide a didactic reconstruction of the article by Einstein, Podolsky e Rosen, introducing the theoretical aspects necessary for the understanding of the work (which are usually presented in the initial phases of Quantum Mechanics courses), discussing the structure of the original argument and explaining the paradox from the very statements taken from the article. Based on the presentation we are proposing, the EPR paradox can be presented in introductory under-graduate courses in Quantum Mechanics (for bachelors and licentiate degrees) enabling the understanding of the discussion on the completeness of quantum theory proposed by Einstein, Podolsky and Rosen and by the genesis of the concept that would later become known as quantum entanglement.

References

Auletta, G., Fortunato, M., & Parisi, G. (2009). Quantum Mechanics. New York, USA: Cambridge University Press.

Bell, J. S. (1964). On the Einstein Podolsky Rosen Paradox*. Physics Physique Fizika, 1, 195–200. https://doi.org/https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

Bender, C. ., Brody, D. C., & Jones, H. F. (2003). Must a Hamiltonian be Hermitian? American Journal of Physics, 71(11), 1095–1102. https://doi.org/https://doi.org/10.1119/1.1574043

Bohm, D. (1952a). A suggested interpretation of the Quantum Theory in terms of “ hidden” variables.I. Physical Review, 85(2), 166-179. https://doi.org/https://doi.org/10.1103/PhysRev.85.166

Bohm, D. (1952b). A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Physical Review, 85(2), 180–193. https://doi.org/https://doi.org/10.1103/PhysRev.85.180

Bohr, N. (1935). Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev., 48(8), 696–702. https://doi.org/10.1103/PhysRev.48.696

Bohr, Niels. (1934). Teoria atómica e a descrição da Natureza. Cambridge, England: Cambridge University Press.

Bunge, M. (1973). Filosofia da Física. Lisboa, Portugal: edições 70.

Bunge, M. (2007). Física e Filosofia (1a ed). São Paulo, Brasil: Perspectiva.

Butkov, E. (1988). Física Matemática. Rio de Janeiro, Brasil: LTC.

Chevallard, Y. (1991). La Transposition didactique: du savoir savant au savoir enseigné. Grenoble, França: La Pensée Sauvage.

Cohen-Tannoudji, C., Diu, B., & Laloë, F. (1977). Quantum Mechanics. New York, USA: John Wiley and Sons.

Cushing, J. (1994). Quantum Mechanics - Historical contingency and the Copenhaguen hegemony. Chicago, USA: University of Chicago Press.

Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777-780. https://doi.org/10.1103/PhysRev.47.777

Freire Jr., O., Pessoa Jr., O., & Bromberg, J. L. (2011). Teoria quântica: estudos históricos e implicações culturais. São Paulo, Brasil: EDUEPB.

Freire, O. (2015). The Quantum Dissidents: Rebuilding the Foundations of Quantum Mechanics (1950-1990). New York, USA: Springer.

Gomatam, R. (2007). Niels Bohr’s interpretation and the Copenhagen interpretation - Are the two incompatible? Philosophy of Science, 74(5), 736–748. https://doi.org/10.1086/525618

Gottfried, K., & Yan, T.-M. (2003). Quantum Mechanics: Fundamentals (2 ed). New York, USA: Springer.

Griffiths, D. J. (2011). Introduction to Quantum Mechanics (2 ed). São Paulo, Brasil: Pearson.

Griffiths, R. B. (1987). Correlations in separated quantum systems: A consistent history analysis of the EPR problem. American Journal of Physics, 55(1), 11–17. https://doi.org/10.1119/1.14965

Howard, D. (2004). Who invented the “Copenhagen interpretation”? A study in mythology. Philosophy of Science, 71(5), 669–682. https://doi.org/10.1086/425941

Jammer, M. (1974). The Philosophy of Quantum Mechanics. New York, USA: John Wiley and Sons.

Jammer, M. (1966). The conceptual develpment of Quantum Mechanics. New York, USA: McGraw-Hill Book Company.

Karam, R. (2020). Schrödinger’s original struggles with a complex wave function. American Journal of Physics, 88(6), 433–438. https://doi.org/10.1119/10.0000852

Karam, R. (2021). Considerações metodológicas sobre o uso de fontes primárias no ensino de Física. Revista Brasileira de Ensino de Ciências e Matemática, 4(ed. especial), 1067–1082. https://doi.org/https://doi.org/10.5335/rbecm.v4i3.12908

Laloë, F. (2001). Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. American Journal of Physics, 69(6), 655–701. https://doi.org/https://doi.org/10.1119/1.1356698

Landau, L. D., & Lifshitz, E. M. (1977). Quantum Mechanics: Non-Relativistic Theory (3th ed). New York, USA: Pergamon Press.

Lima, N., Cavalcanti, C., & Ostermann, F. (2021). Concepções de Dualidade Onda-Partícula: Uma proposta didática construída a partir de trechos de fontes primárias da Teoria Quântica. Revista Brasileira de Ensino de Física, 43, e20200270. https://doi.org/10.1590/1806-9126-rbef-2020-0270

Lima, N., & Karam, R. (2021). Particle velocity = group velocity: A common assumption in the different theories of Louis de Broglie and Erwin Schrödinger. American Journal of Physics, 89(5), 521–528. https://doi.org/10.1119/10.0003165

Mermin, N. D. (1985). Is the moon there when nobody looks? Reality and the quantum theory. Physics Today, 38(4), 38–47. https://doi.org/https://doi.org/10.1063/1.880968

Mostafazadeh, A. (2001). Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. Journal of Mathematical Physics, 43(1), 205–214. https://doi.org/https://doi.org/10.1063/1.1418246

Neumann, J. Von. (1932). Mathematical Foundations of Quantum Mechanics (1st ed.). Berlin, Germany: Julius Springer.

Ostermann, F., Pereira, A., Cavalcanti, C. J. de H., & Pessoa Jr., O. (2012). Uma abordagem conceitual e fenomenológica dos postulados da física quântica. Caderno Brasileiro de Ensino de Física, 29(2), 831–863. https://doi.org/10.5007/2175-7941.2012v29nesp2p831

Reisler, D. L. (1971). The Epistemological Basis of Einstein’s, Podolsky’s, and Rosen’s Objection to Quantum Theory. American Journal of Physics, 39, 821–831. https://doi.org/10.1119/1.1986291

Sakurai, J. J., & Napolitano, J. (2013). Mecânica Quântica Moderna (2 ed). Porto Alegre, Brasil: Bookman.

Schrödinger, E. (1935). Discussion of Probability Relations between Separated Systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31(4), 555–563. https://doi.org/10.1017/S0305004100013554

Schrödinger, E. (1936). Probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 32(3), 446–452. https://doi.org/10.1017/S0305004100019137

Published

2021-12-12

Issue

Section

Essays and Special Topics

How to Cite

What is the EPR paradox? A didactic reconstruction of the article by Einstein, Podolsky and Rosen. (2021). Journal of Physics Teaching, 33(3), 167-182. https://doi.org/10.55767/2451.6007.v33.n3.36001