Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods

Authors

  • Santiago Quinga Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, S/N y Ambato, Av. Gral. Rumiñahui, Sangolquí, Ecuador.

DOI:

https://doi.org/10.55767/2451.6007.v33.n3.36000

Keywords:

Nonlinear equations, Iterative multi-step methods, Newton, Ostrowski’s method, Physics

Abstract

This work provides the physics teacher with theoretical and computational foundations to solve nonlinear equations, very com-mon in solving physical problems. In the present research three physics problems are solved, which are: a sphere floating in water, non-free fall of a parachutist, compression of a real spring; making use of principles related to fluids, kinematics and dynamics. Nonlinear equations are obtained which are difficult and, in some cases, impossible to be solved by means of analyti-cal methods. To find an approximate solution to these equations we use iterative methods starting from traditional methods such as Newton, Secant, Steffensen to the introduction of multi-step methods with high order of convergence such as Traub, Ostrowski and methods of order eight designed from Ostrowski's method. Finally, an analysis of the results obtained by applying all these methods to each of the selected physical problems is carried out and, in this way, establish which iterative method is more appropriate in each situation.

References

Amorós, C. (2020). Estudio sobre convergencia y dinámica de los métodos de Newton, Stirling y alto orden. Madrid: Universidad Internacional de la Rioja.

Artidiello, S. (2014). Diseño, implementación y convergencia de métodos iterativos para resolver ecuaciones y sistemas no lineales utilizando funciones peso. Valencia: Universitat Politécnica de Valencia.

Chicharro, F. (2017). Análisis dinámico y aplicaciones de métodos iterativos de resolución de ecuaciones no lineales. Valencia: Universitat Politécnica de Valencia.

Cordero, A., Hueso, J., & Torregrosa, J. (2006). Problemas resueltos de métodos numéricos. Madrid: Paraninfo.

Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235, 3189-3194.

Džunić, J., & Petković, M. S. (2012). A Family of Three-Point Methods of Ostrowski's Type for Solving Nonlinear Equations. Journal of Applied Mathematics.

García, J. (2017). Análisis dinámico. Valencia: Universidad Politécnica de Valencia.

Kung, H. T., & Traub, J. F. (1974). Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math, 21(4), 643-651.

Mathews, J. H., & Fink, K. D. (2000). Métodos numéricos con Matlab. Madrid: Prentice Hall.

Ostrowski, A. M. (1960). Solution of equations ans systems of equations. New York: Academic Press.

Ostrowski, A. M. (1966). Solutions of equations and systems of equations. Academic Press.

Steffensen, J. F. (1933). Remarks on iteration. Skand. Aktuarietidskrift, 64-72.

Traub, J. F. (1964). Iterative methods for the solution of equations. Englewood Cliffs, N.J., Prentice-Hall.

Ypma, T. J. (1995). Historical development of the Newton-Raphson method. SIAM Rev., 37, 531-551.

Published

2021-12-12

Issue

Section

Essays and Special Topics

How to Cite

Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods . (2021). Journal of Physics Teaching, 33(3), 145-165. https://doi.org/10.55767/2451.6007.v33.n3.36000