The use of the spreadsheet for understanding the daily solar movement from observations of the sky made in non-presential classes

Authors

  • Diego Galperin Universidad Nacional de Río Negro. Villegas 147, Bariloche, CP 8400, Río Negro. Argentina.
  • Josué Dionofrio Colegio Highest College Hull Cordell. Crisólogo Larralde 3281, CP 1429, Ciudad de Buenos Aires. Argentina.
  • Andrés Raviolo Universidad Nacional de Río Negro. Villegas 147, Bariloche, CP 8400, Río Negro. Argentina.

DOI:

https://doi.org/10.55767/2451.6007.v33.n3.35994

Keywords:

Observation, Daily solar movement, Spreadsheet, Polar graph, Modeling

Abstract

This work presents a proposal to reconstruct the daily solar movement from observations made by students from their own homes in times of non-presential classes. The measurement of the direction and length of the shadow of a vertical stake at four different times of the day was proposed to each student, and a spreadsheet was programmed to represent these measurements on a polar graph. The data obtained were analyzed and the solar displacement was represented. The proposal, the methodology and the results obtained in its implementation with a group of high school students are detailed. Conclusions are presented on the use of this resource for modeling the same phenomenon when it is measured by different observers. The sequence made it possible to relate students to the solar movement as it is perceived in their own celestial environment, in addition to favoring the development of scientific skills related to measurement, graphic representation, data analysis and modeling.

 

References

Alvarez, M., Galperin, D. y Quinteros, C. (2018). Indagación de las concepciones de estudiantes primarios y secundarios sobre los fenómenos astronómicos cotidianos. En Papini, M. y Sica, F. (comp.), Las ciencias de la naturaleza y la matemática en el aula: nuevos desafíos y paradigmas, 129-142. Tandil: UNICEN.

Adúriz-Bravo, A. e Izquierdo-Aymerich, M. (2009). Un modelo de modelo científico para la enseñanza de las ciencias naturales. Revista Electrónica de Investigación en Educación en Ciencias, 4(1), 40-49.

Baker, J. y Sugden, S. (2003). Spreadsheets in education - The first 25 years. Spreadsheets in Education (eJSiE), 1(1), 18-43.

Baxter, J. (1989). Children’s understanding of familiar astronomical events. International Journal of Science Education, 11(5), 502-513. https://doi.org/10.1080/0950069890110503

Beare, R. (1993). How spreadsheets can aid a variety of mathematical learning activities from primary to tertiary level. En Burton, L. y Jaworski, B. (Ed.), Technology in Mathematics Teaching: A Bridge Between Teaching and Learning, 117-124. Birmingham, U.K.: University of Birmingham.

Benacka, J. (2016). Numerical modelling with spreadsheets as a means to promote STEM to High School students. Eurasia Journal of Mathematics, Science & Technology Education, 12(4), 947-964. http://dx.doi.org/10.12973/eurasia.2016.1236a

Black, A. (2005). Spatial ability and Earth science conceptual understanding. Journal of Geoscience Education, 53(4), 402-414. http://dx.doi.org/10.5408/1089-9995-53.4.402

Boilevin, J. (2000). Conception et analyse du fonctionnement d'un dispositif de formation initiale d'enseignants de physique-chimie utilisant des savoirs issus de la recherche en didactique: un modèle d'activité et des cadres d'analyse des interactions en classe (Tesis doctoral). Université de Provence.

Bryman, A. (2004). Social research methods. 2nd. Edition. New York: Oxford University Press.

Chiras, A. y Valanides, N. (2008). Day/night cycle: mental models of primary school children. Science Education International, 19(1), 65-83.

Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 9 (22), 1041-1053. http://dx.doi.org/10.1080/095006900416901

Esquembre, F. (2004). Creación de simulaciones interactivas en Java: aplicación a la enseñanza de la Física. Madrid: Pearson.

Galagovsky, L. y Adúriz-Bravo, A. (2001). Modelos y analogías en la enseñanza de las ciencias naturales. El concepto de modelo didáctico analógico. Enseñanza de las ciencias, 19(2), 231-242.

Galperin, D. (2011). Propuestas didácticas para la enseñanza de la Astronomía. En Insaurralde, M. (coord.), Ciencias Naturales. Líneas de acción didáctica y perspectivas epistemológicas, 189-229. Buenos Aires: Novedades Educativas.

Galperin, D. (2016). Sistemas de referencia y enseñanza de las ciencias: el caso de los fenómenos astronómicos cotidianos (Tesis doctoral). Tandil: UNICEN.

Galperin, D. y Raviolo, A. (2014). Sistemas de referencia en la enseñanza de la Astronomía. Un análisis a partir de una revisión bibliográfica. Latin American Journal of Physics Education, 8(1), 136-148.

Galperin D., Alvarez, M., Heredia, L. y Haramina, J. (2020). Análisis de videos educativos y de divulgación sobre día/noche, estaciones y fases lunares. Revista Enseñanza de la Física, 32(no. extra), 125-133.

Gilbert, J., Boulter, C. y Rutherford, M. (2000). Explanations with models in science education. En Gilbert, J. y Boulter, C. (eds.), Developing models in science education, 193-208. Dordrecht: Kluwer. http://dx.doi.org/10.1007/978-94-010-0876-1

Guglielmino, R. (1989). Using spreadsheets in an introductory physics lab. The Physics Teacher, 27(3), 175-178. http://dx.doi.org/10.1119/1.2342709

Jiménez Liso, R., López-Gay, R. y Martínez Chico, M. (2012). Cómo trabajar en el aula los criterios para aceptar o rechazar modelos científicos. ¿Tirar piedras contra nuestro propio tejado? Alambique, 72, 47-54.

Johnson-Laird, P. (1983). Mental models. Cambridge: Cambridge University Press.

Lanciano, N. (1989). Ver y hablar como Tolomeo y pensar como Copérnico. Enseñanza de las Ciencias, 7(2), 173-182.

Lombardi, O. (1998). La noción de modelo en ciencias. Educación en Ciencias, 2(4), 5-13.

López-Gay, R., Jiménez Liso, M., Osuna, L. y Martínez Torregrosa, J. (2009). El aprendizaje del modelo Sol-Tierra. Una oportunidad para la formación de maestros. Alambique, 61, 27-37.

Ortega, Z., Medellín, A. y Martínez, J. (2010). Influencia en el aprendizaje de los alumnos usando simuladores de física. Latin American Journal of Physics Education, 4 (Suppl. 1), 953-956.

Parker J. y Heywood D. (1998). The earth and beyond: developing primary teachers' understanding of basic astronomical events. International Journal of Science Education, 20(5), 503-520. http://dx.doi.org/10.1080/0950069980200501

Plummer, J., Wasko, K. y Slagle, C. (2011). Children learning to explain daily celestial motion: Understanding astronomy across moving frames of reference. International Journal of Science Education, 33(14), 1963-1992. https://doi.org/10.1080/09500693.2010.537707

Plummer, J., Kocareli, A., Slagle, C. (2014). Learning to explain astronomy across moving frames of reference: Exploring the role of classroom and planetarium-based instructional contexts. International Journal of Science Education, 36(7), 1083-1106. http://dx.doi.org/10.1080/09500693.2013.843211

Raviolo, A. (2002). Hojas de cálculo en clases de ciencias. Revista de Educación en Ciencias, 3(2), 100-102.

Raviolo, A. (2019). Imágenes y enseñanza de la Química. Aportes de la Teoría cognitiva del aprendizaje multimedia. Educación Química, 30(2), 114-128.

Raviolo, A., Alvarez, M. y Aguilar, A. (2011). La hoja de cálculo en la enseñanza de la Física: re-creando simulaciones. Revista de Enseñanza de la Física, 24(1), 97-107.

Shen, J. y Confrey, J. (2010). Justifying Alternative Models in Learning Astronomy: A study of K-8 science teacher´s understanding of frames of reference. International Journal of Science Education, 32(1), 1-29. http://dx.doi.org/10.1080/09500690802412449

Schoon, K. (1992). Students alternative conceptions of Earth and space. Journal of Geological Education, 40(3), 209-214. http://dx.doi.org/10.5408/0022-1368-40.3.209

Trumper, R. (2001). Assessing students’ basic astronomy conceptions from junior high school through university. Australian Science Teachers Journal, 47(1), 21–31.

Published

2021-12-12

How to Cite

The use of the spreadsheet for understanding the daily solar movement from observations of the sky made in non-presential classes. (2021). Journal of Physics Teaching, 33(3), 89-100. https://doi.org/10.55767/2451.6007.v33.n3.35994