Discursive interactions in didactic work with explanations. A case study focused on the structure of school science explanations

Authors

  • Guillermo Cutrera Facultad de Ciencias Exactas y Naturales. Departamento de Educación Científica. Universidad Nacional de Mar del Plata. Funes 3350, CP 7600, Mar del Plata, Argentina
  • Marta Massa Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario. Avda. Pellegrini 250, CP 2000, Rosario, Argentina
  • Silvia Stipcich Facultad de Ciencias Exactas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Pinto 399, CP 7000, Tandil, Argentina

DOI:

https://doi.org/10.55767/2451.6007.v32.n2.31185

Keywords:

Structure of scientific explanations, Levels of conceptualization, Initial teacher training

Abstract

Ability to construct logical and coherent explanations, based on scientific principles, is a central aspect for school science practice as is currently emphasized in curriculum reforms and standards around the world. This paper presents the results of a research on didactic work with the structure of explanations during two instances in classroom: idea-sharing session and joint construction with students. The case of a future teacher during her teaching residency in a Physic chemistry classroom is studied. Discursive interactions are analyzed and discursive strategies, used in her interactions with students, are characterized. The results show that the explanations are expressed as narrations characterized by sequences of caus-ally linked events, yet with weaknesses in the macro/micro connections between facts and modeling.

References

Bargalló, C. M. (2005). Aprender ciencias a través del lenguaje. Educar, (abril-junio).

Braaten, M. y Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639-669.

Carlino, P. (2013). Alfabetización académica diez años después. Revista Mexicana de Investigación Educativa, 18(57), 355-381.

Cutrera, G., Massa, M. y Stipcich, S. (2019). Contextualización del discurso docente y explicaciones científicas en el aula de ciencia. Un estudio de caso durante la residencia docente. Revista de Enseñanza de la Física, 31, 251-258.

de Lira, M. R. (2015). A explicação nas aulas de ciências naturais no entendimento dos estudantes do 6º ano do ensino fundamental. Presentado al II CONEDU Congresso nacional de educação, Campina Grande. Brasil. 14 a 17 de octubre.

Fang, Z. (2005). Scientific literacy: A systemic functional linguistics perspective. Science Education, 89(2), 335-347.

Fang, Z. (2014). Preparing content area teachers for disciplinary literacy instruction: The role of literacy teacher educators. Journal of Adolescent & Adult Literacy, 57(6), 444-448.

García-Carmona, A. (2013). Educación científica y competencias docentes: Análisis de las reflexiones de futuros profesores de Física y Química. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10.

Halliday, M. y Martin, J. (1993). Writing science: Literacy and discursive power. Washington, D.C.: The Falmer Press.

Johnstone, A. (1993). The development of chemistry teaching: A changing response to changing demand. J. Chem. Educ, 70(9), 701.

Lee, O. y Fradd, S. H. (1996). Literacy skills in science learning among linguistically diverse students. Science Education, 80(6), 651-671.

Lemke, J. (1997). Aprender a hablar ciencia: lenguaje, aprendizaje y valores. Barcelona: Paidós.

Lemke, J. (2004). The literacies of science. Crossing borders in literacy and science instruction: Perspectives on theory and practice, 33-47.

Maxwell, J. A. y Miller, B. A. (2008). Categorizing and connecting strategies in qualitative data analysis. In Handbook of emergent methods (pp. 461-477).

McNeill, K. L. (2007). The role of the teacher in supporting students in writing scientific explanations. Presentado al Annual Meeting of the National Association for Research in Science Teaching, New Orleans, LA.

McNeill, K. L. y Krajcik, J. (2007). Middle school students’ use of appropriate and inappropriate evidence in writing scientific explanations. En M. C. Lovett y P. Shah (Eds.), Carnegie Mellon symposia on cognition. Thinking with data (233-265). Lawrence Erlbaum Associates Publishers.

Ogborn, J., Kress, G. y Martins, I. (1996). Explaining science in the classroom. UK: McGraw-Hill Education.

Osborne, J., Erduran, S. y Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of research in science teaching, 41(10), 994-1020.

Osborne, J. F. y Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627-638.

Putra, G. B. S. y Tang, K.-S. (2018). Supporting Scientific Report Writing in a Chemistry Classroom. En Science Education Research and Practice in Asia-Pacific and Beyond (53-67): Springer.

Sandoval, W. (2003). Conceptual and epistemic aspects of students' scientific explanations. The Journal of the Learning Sciences, 12(1), 5-51.

Sandoval, W. A. y Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and instruction, 23(1), 23-55.

Schleppegrell, M. J. (2004). The language of schooling: A functional linguistics perspective: Routledge.

Shanahan, T. y Shanahan, C. (2012). What is disciplinary literacy and why does it matter? Topics in language disorders, 32(1), 7-18.

Stake, R. (1995). The art of case study research. Sage.

Taber, K. S. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chem. Educ. Res. Pract., 14(2), 156-168. doi:10.1039/c3rp00012e

Tang, K.-S. (2015). The PRO instructional strategy in the construction of scientific explanations. Teaching Science, 61(4), 14.

Tang, K.-S. (2016). How is disciplinary literacy addressed in the Science classroom?: A Singaporean case study. The Australian Journal of Language and Literacy, 39(3), 220.

Toulmin, S. E. (2003). The uses of argument. Cambridge university press.

Veel, R. (1997). Learning how to mean—scientifically speaking: Apprenticeship into scientific discourse in the secondary school. In F. Christie y J. R. Martin (Eds.), Genre and institutions: Social processes in the workplace and school (161-195). London: Continuum.

Wellington, J. y Osborne, J. (2001). Language and literacy in science education. Buckingham: Open University Press.

Williams, G. y Clement, J. (2015). Identifying multiple levels of discussion-based teaching strategies for constructing scientific models. International Journal of Science Education, 37(1), 82-107.

Windschitl, M., Thompson, J. y Braaten, M. (2008). Beyond the scientific method: Model‐based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967.

Yeo, J. y Gilbert, J. K. (2014). Constructing a scientific explanation - A narrative account. International Journal of Science Education, 36(11), 1902-1935.

Yeo, J. y Gilbert, J. K. (2017). The Role of Representations in Students’ Explanations of Four Phenomena in Phys-ics: Dynamics, Thermal Physics, Electromagnetic Induction and Superposition. En D. Treagust, R. Duit y H. E. Fischer (Ed.). Multiple Representations in Physics Education (255-287). Springer.

Published

2020-12-13

How to Cite

Discursive interactions in didactic work with explanations. A case study focused on the structure of school science explanations. (2020). Journal of Physics Teaching, 32(2), 19-29. https://doi.org/10.55767/2451.6007.v32.n2.31185