Modeling Coriolis Effect on long-range projectiles´ motion

Authors

  • Edgar David Guarin
  • Néstor Méndez-Hincapié

DOI:

https://doi.org/10.55767/2451.6007.v28.n1.14689

Keywords:

Modeling, Pseudo-forces, Coriolis Effect, Computational physics, Teaching of classical mechanics

Abstract

Pseudo-forces originated by Earth´s rotation affect the parabolic motion of projectiles moving at the planet´s surface. These forces deviate the howitzers of their launching plane, preventing their arrival to the targeted location. This effect is called the Coriolis Effect and depends on different variables such as shell´s position, velocity, shooting direction, etc. In order to better understand the projectile´s trajectory taking this effect into account, a computational model was developed considering the movement of a shell from a non-inertial reference frame (the Earth) point of view, using the C++ programming language and some numerical methods for the resolution of the equations. Thus, the basic model used for the creation of numerical code allows graphic representation of any conditions showing the dynamic behavior of the projectile. This work further reinforces the importance of computer modeling of dynamic systems on physics education, since it helps students to approach complex physical phenomena with an understandable visual tool.

References

Beatty, M. F. (2006). Principles of engineering mechanics: Volume 2 Dynamics - The analysis of motion.Nueva York: Springer.

Buzzo, R. (2007). Estrategia EE (Excel-Euler) en la enseñanza de la Física. Latin-American Journal of Physics Education, 1(1), pp. 19-23.

Franco, A. (2006). Aceleración centrífuga. Recuperado el 5 de mayo de 2014, de Física con ordenador:http://www.sc.ehu.es/sbweb/fisica.htm

Goldstein, H., Poole, C.y Safko, J. (1959). Classical Mechanics. Nueva York: Addison Wesley.

González, A. (2008). Comparación de métodos analíticos y numéricos para la solución del lanzamiento vertical de una bola en el aire. Latin-American Journal of Physics Education, 2(2), pp. 170-179.

Gould, H., Tobochnik, J. y Christian, W. (2007). An introduction to computer simulation methods: Aplication to physical systems.Nueva York: Pearson, Addison Wesley.

Guarín, E. D. y Moreno, H. (2012). La modelación y las visualizaciones computarizadas en la Enseñanza de la Física. Revista Nodos y Nudos, 4(33), pp. 49-61.

McDonald, J. E. (1952). The Coriolis Effect. Scientific American Magazine, (186), pp. 72-76.

Newton, I. (1686). Mathematical Principles of Natural Philosophy and his system of the world.Cambridge: Trinity College.

Resnick, R. y Halliday, D. (1971). Física parte I. Barcelona: CECSA.

Smith, D. C. (2014). Super guns - Part 1.Obtenido de RDECOM, Estados Unidos: U.S. army.

Thompson, E. (1972). Coriolis Deflection of a Ballistic Projectile. American Journal of Physics, 40, pp. 1477-1483.

Wang, A., Li, J., Zhai, X. y Zhang, X. (2010). Study on the effect of Coriolis force on projectile motion based on Matlab. Journal of Shaanxi University of Science & Technology (Natural Science Edition), 6, pp. 106-110.

Downloads

Published

2016-06-16

Issue

Section

Essays and Special Topics

How to Cite

Modeling Coriolis Effect on long-range projectiles´ motion. (2016). Journal of Physics Teaching, 28(1), 73-82. https://doi.org/10.55767/2451.6007.v28.n1.14689