Relación entre el síndrome metabólico y la salud cerebral
HTML
PDF

Palabras clave

síndrome metabólico
trastornos mentales
enfermedades neurodegenerativas
deterioro cognitivo

Cómo citar

Diaz-Gerevini, G., Priotto, S., Barotto, N., Astorquiza, P., Barbosa, C., López, P., & Repossi, G. (2023). Relación entre el síndrome metabólico y la salud cerebral. Pinelatinoamericana, 3(2), 156–173. Recuperado a partir de https://revistas.unc.edu.ar/index.php/pinelatam/article/view/42021

Resumen

El síndrome metabólico es una combinación de alteraciones metabólicas, con una prevalencia estimada en un 20-25% de la población mundial. Según la evidencia experimental, clínica y epidemiológica se asocia con los principales trastornos psiquiátricos, alteraciones en el sistema nervioso y enfermedades neurodegenerativas. La obesidad, que induce un estado inflamatorio crónico, y la insulinoresistencia parecen ser los principales procesos fisiopatológicos basales que llevan a progresiva neuroinflamación, daño en el tejido nervioso y deterioro cognitivo. Se proponen   intervenciones terapéuticas simples como: la dieta, actividad física, mejora de la calidad del sueño y ciertos medicamentos con potenciales efectos neuroprotectores.

HTML
PDF

Citas

Aballay, L. R., Eynard, A. R., Díaz, M. del P., Navarro, A. y Muñoz, S. E. (2013). Overweight and obesity: a review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America. Nutrition reviews, 71(3), 168–179. https://doi.org/10.1111/j.1753-4887.2012.00533.x

Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., Fruchart, J. C., James, W. P., Loria, C. M., Smith, S. C., Jr, International Diabetes Federation Task Force on Epidemiology and Prevention, Hational Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society y International Association for the Study of Obesity (2009). Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120(16), 1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644

Alfaro, F. J., Gavrieli, A., Saade-Lemus, P., Lioutas, V. A., Upadhyay, J. y Novak, V. (2018). White matter microstructure and cognitive decline in metabolic syndrome: a review of diffusion tensor imaging. Metabolism: clinical and experimental, 78, 52–68. https://doi.org/10.1016/j.metabol.2017.08.009

Amick, K. A., Mahapatra, G., Bergstrom, J., Gao, Z., Craft, S., Register, T. C., Shively, C. A. y Molina, A. J. A. (2021). Brain region-specific disruption of mitochondrial bioenergetics in cynomolgus macaques fed a Western versus a Mediterranean diet. American journal of physiology. Endocrinology and metabolism, 321(5), E652–E664. https://doi.org/10.1152/ajpendo.00165.2021

Antoniazzi, L. D., Aballay, L. R., Fernández, A. R. y Fiol de Cuneo, M. (2020). Evolución del estado nutricional en estudiantes de educación física, asociado al nivel de riesgo cardiovascular, los hábitos alimentarios y el nivel de actividad física [Evolution of nutritional status in physical education students, associated with the level of cardiovascular risk, food consumption and the level of physical activity]. Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina), 77(4), 260–264. https://doi.org/10.31053/1853.0605.v77.n4.28301

Armeli, F., Bonucci, A., Maggi, E., Pinto, A. y Businaro, R. (2021). Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules, 11(6), 790. https://doi.org/10.3390/biom11060790

Bandala, C., Cárdenas-Rodríguez, N., Reyes-Long, S., Cortes-Altamirano, J. L., Garciadiego-Cázares, D., Lara-Padilla, E., Ibáñez-Cervantes, G., Mancilla-Ramírez, J., Gómez-Manzo, S. y Alfaro-Rodríguez, A. (2022). Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants (Basel, Switzerland), 11(10), 1972. https://doi.org/10.3390/antiox11101972

Barbagallo, M. y Dominguez, L. J. (2014). Type 2 diabetes mellitus and Alzheimer's disease. World journal of diabetes, 5(6), 889–893. https://doi.org/10.4239/wjd.v5.i6.889

Barber, T. M., Kyrou, I., Randeva, H. S. y Weickert, M. O. (2021). Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction. International journal of molecular sciences, 22(2), 546. https://doi.org/10.3390/ijms22020546

Beirowski B. (2022). Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiology of disease, 170, 105751. https://doi.org/10.1016/j.nbd.2022.105751

Bitew, Z. W., Alemu, A., Ayele, E. G., Tenaw, Z., Alebel, A. y Worku, T. (2020). Metabolic syndrome among children and adolescents in low and middle income countries: a systematic review and meta-analysis. Diabetology & metabolic syndrome, 12, 93. https://doi.org/10.1186/s13098-020-00601-8

Brooks, S., Branyan, K. W., DeVallance, E., Skinner, R., Lemaster, K., Sheets, J. W., Pitzer, C. R., Asano, S., Bryner, R. W., Olfert, I. M., Frisbee, J. C. y Chantler, P. D. (2018). Psychological stress-induced cerebrovascular dysfunction: the role of metabolic syndrome and exercise. Experimental physiology, 103(5), 761–776. https://doi.org/10.1113/EP086892

Bruehl, H., Sweat, V., Tirsi, A., Shah, B. y Convit, A. (2011). Obese Adolescents with Type 2 Diabetes Mellitus Have Hippocampal and Frontal Lobe Volume Reductions. Neuroscience and medicine, 2(1), 34–42. https://doi.org/10.4236/nm.2011.21005

Camandola, S. y Mattson, M. P. (2017). Brain metabolism in health, aging, and neurodegeneration. The EMBO journal, 36(11), 1474–1492. https://doi.org/10.15252/embj.201695810

Case, C. C., Jones, P. H., Nelson, K., O'Brian Smith, E. y Ballantyne, C. M. (2002). Impact of weight loss on the metabolic syndrome. Diabetes, obesity & metabolism, 4(6), 407–414. https://doi.org/10.1046/j.1463-1326.2002.00236.x

Cheng, D., Yang, S., Zhao, X. y Wang, G. (2022). The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug design, development and therapy, 16, 665–684. https://doi.org/10.2147/DDDT.S348055

de Souza, J. F. T., Dáttilo, M., de Mello, M. T., Tufik, S. y Antunes, H. K. M. (2017). High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males. Frontiers in physiology, 8, 992. https://doi.org/10.3389/fphys.2017.00992

Das, U. N., Repossi, G., Dain, A. y Eynard, A. R. (2011). Is insulin resistance a disorder of the brain?. Frontiers in bioscience (Landmark edition), 16(1), 1–12. https://doi.org/10.2741/3671

Defagó, M. D. y Eynard, A. R. (2022). Potenciales de la nutrigenética en el abordaje y tratamiento de enfermedades cardiovasculares y factores de riesgo asociados [Nutrigenetics: potentials and applications in cardiovascular diseases and associated risk factors]. Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina), 79(2), 168–180.

Diaz, A., Espeche, W., March, C., Flores, R., Parodi, R., Genesio, M. A., Sabio, R. y Poppe, S. (2018). Prevalencia del síndrome metabólico en Argentina en los últimos 25 años: revisión sistemática de estudios observacionales poblacionales [Prevalence of metabolic syndrome in Argentina in the last 25 years: systematic review of population observational studies]. Hipertension y riesgo vascular, 35(2), 64–69. https://doi.org/10.1016/j.hipert.2017.08.003

Díaz-Gerevini, G. T., Daín, A., Pasqualini, M. E., López, C. B., Eynard, A. R. y Repossi, G. (2019). Diabetic encephalopathy: beneficial effects of supplementation with fatty acids ω3 and nordihydroguaiaretic acid in a spontaneous diabetes rat model. Lipids in health and disease, 18(1), 43. https://doi.org/10.1186/s12944-018-0938-7

Díaz-Gerevini, G. T., Repossi, G., Dain, A., Tarres, M. C., Das, U. N. y Eynard, A. R. (2014). Cognitive and motor perturbations in elderly with longstanding diabetes mellitus. Nutrition (Burbank, Los Angeles County, Calif.), 30(6), 628–635. https://doi.org/10.1016/j.nut.2013.11.007

Dionysopoulou, S., Charmandari, E., Bargiota, A., Vlahos, N., Mastorakos, G. y Valsamakis, G. (2021). The Role of Hypothalamic Inflammation in Diet-Induced Obesity and Its Association with Cognitive and Mood Disorders. Nutrients, 13(2), 498. https://doi.org/10.3390/nu13020498

Dirección Nacional de Promoción de la Salud y Control de Enfermedades Crónicas No Transmisibles. (2019). Cuarta Encuesta Nacional de Factores de Riesgo. Principales resultados. Ministerio de Salud y Desarrollo Social de la Nación. https://bancos.salud.gob.ar/sites/default/files/2020-01/4ta-encuesta-nacional-factores-riesgo_2019_principales-resultados.pdf

Donga, E. y Romijn, J. A. (2014). Sleep characteristics and insulin sensitivity in humans. Handbook of clinical neurology, 124, 107–114. https://doi.org/10.1016/B978-0-444-59602-4.00007-1

Figueroa Sobrero, A., Evangelista, P., Kovalskys, I., Digón, P., López, S., Scaiola, E., Perez, N., Dieuzeide, G., Walz, F. y Mazza, C. (2016). Cardio-metabolic risk factors in Argentine children. A comparative study. Diabetes & metabolic syndrome, 10(1 Suppl 1), S103–S109. https://doi.org/10.1016/j.dsx.2015.10.003

Franco, I., Bianco, A., Mirizzi, A., Campanella, A., Bonfiglio, C., Sorino, P., Notarnicola, M., Tutino, V., Cozzolongo, R., Giannuzzi, V., Aballay, L. R., Buongiorno, C., Bruno, I. y Osella, A. R. (2020). Physical Activity and Low Glycemic Index Mediterranean Diet: Main and Modification Effects on NAFLD Score. Results from a Randomized Clinical Trial. Nutrients, 13(1), 66. https://doi.org/10.3390/nu13010066

Fujita, H., Hosono, A., Shibata, K., Tsujimura, S., Oka, K., Okamoto, N., Kamiya, M., Kondo, F., Wakabayashi, R., Ichikawa, M., Yamada, T. y Suzuki, S. (2019). Physical Activity Earlier in Life Is Inversely Associated With Insulin Resistance Among Adults in Japan. Journal of epidemiology, 29(2), 57–60. https://doi.org/10.2188/jea.JE20170180

Gao, F., Zang, L., Wu, D. Y., Li, Y. J., Zhang, Q., Wang, H. B., Tian, G. L. y Mu, Y. M. (2017). Pioglitazone improves the ability of learning and memory via activating ERK1/2 signaling pathway in the hippocampus of T2DM rats. Neuroscience letters, 651, 165–170. https://doi.org/10.1016/j.neulet.2017.04.052

Gardoni, F., Kamal, A., Bellone, C., Biessels, G. J., Ramakers, G. M., Cattabeni, F., Gispent, W. H. y Di Luca, M. (2002). Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats. Journal of neurochemistry, 80(3), 438–447. https://doi.org/10.1046/j.0022-3042.2001.00713.x

Gómez-Apo, E., Mondragón-Maya, A., Ferrari-Díaz, M. y Silva-Pereyra, J. (2021). Structural Brain Changes Associated with Overweight and Obesity. Journal of obesity, 2021, 6613385. https://doi.org/10.1155/2021/6613385

Görlach, A., Dimova, E. Y., Petry, A., Martínez-Ruiz, A., Hernansanz-Agustín, P., Rolo, A. P., Palmeira, C. M. y Kietzmann, T. (2015). Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox biology, 6, 372–385. https://doi.org/10.1016/j.redox.2015.08.016

Grieco, M., Giorgi, A., Gentile, M. C., d'Erme, M., Morano, S., Maras, B. y Filardi, T. (2019). Glucagon-Like Peptide-1: A Focus on Neurodegenerative Diseases. Frontiers in neuroscience, 13, 1112. https://doi.org/10.3389/fnins.2019.01112

Haley, A. P., Gonzales, M. M., Tarumi, T., Miles, S. C., Goudarzi, K. y Tanaka, H. (2010). Elevated cerebral glutamate and myo-inositol levels in cognitively normal middle-aged adults with metabolic syndrome. Metabolic brain disease, 25(4), 397–405. https://doi.org/10.1007/s11011-010-9221-y

Hirschler, V., Oestreicher, K., Maccallini, G. y Aranda, C. (2010). Relationship between obesity and metabolic syndrome among Argentinean elementary school children. Clinical biochemistry, 43(4-5), 435–441. https://doi.org/10.1016/j.clinbiochem.2009.11.003

Hoth, K. F., Gonzales, M. M., Tarumi, T., Miles, S. C., Tanaka, H. y Haley, A. P. (2011). Functional MR imaging evidence of altered functional activation in metabolic syndrome. AJNR. American journal of neuroradiology, 32(3), 541–547. https://doi.org/10.3174/ajnr.A2315

Hu, Z., Zhou, L. y He, T. (2019). Potential effect of exercise in ameliorating insulin resistance at transcriptome level. The Journal of sports medicine and physical fitness, 59(1), 116–125. https://doi.org/10.23736/S0022-4707.17.07862-8

Jeon, B. T., Jeong, E. A., Shin, H. J., Lee, Y., Lee, D. H., Kim, H. J., Kang, S. S., Cho, G. J., Choi, W. S. y Roh, G. S. (2012). Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes, 61(6), 1444–1454. https://doi.org/10.2337/db11-1498

Ji, S., Chen, Y., Zhou, Y., Cao, Y., Li, X., Ding, G. y Tang, F. (2023). Association between anxiety and metabolic syndrome: An updated systematic review and meta-analysis. Frontiers in psychiatry, 14, 1118836. https://doi.org/10.3389/fpsyt.2023.1118836

Kassi, E., Pervanidou, P., Kaltsas, G. y Chrousos, G. (2011). Metabolic syndrome: definitions and controversies. BMC medicine, 9, 48. https://doi.org/10.1186/1741-7015-9-48

Kassir, R., Gimet, P., Hupin, D., Boutet, C., Barthélémy, J. C., Roche, F. y Celle, S. (2023). Brain alterations associated with overweight evaluated by body mass index or body fat index in an elderly population: the PROOF study. Frontiers in endocrinology, 14, 1148068. https://doi.org/10.3389/fendo.2023.1148068

Katsumata, Y., Todoriki, H., Higashiuesato, Y., Yasura, S., Willcox, D. C., Ohya, Y., Willcox, B. J. y Dodge, H. H. (2012). Metabolic syndrome and cognitive decline among the oldest old in Okinawa: in search of a mechanism. The KOCOA Project. The journals of gerontology. Series A, Biological sciences and medical sciences, 67(2), 126–134. https://doi.org/10.1093/gerona/glr189

Kawai, T., Autieri, M. V. y Scalia, R. (2021). Adipose tissue inflammation and metabolic dysfunction in obesity. American journal of physiology. Cell physiology, 320(3), C375–C391. https://doi.org/10.1152/ajpcell.00379.2020

Kawano, T., Iwata, H., Aoyama, B., Nishigaki, A., Yamanaka, D., Tateiwa, H., Eguchi, S., Locatelli, F. M. y Yokoyama, M. (2016). The role of hippocampal insulin signaling on postoperative cognitive dysfunction in an aged rat model of abdominal surgery. Life sciences, 162, 87–94. https://doi.org/10.1016/j.lfs.2016.08.020

Kern, W., Peters, A., Fruehwald-Schultes, B., Deininger, E., Born, J. y Fehm, H. L. (2001). Improving influence of insulin on cognitive functions in humans. Neuroendocrinology, 74(4), 270–280. https://doi.org/10.1159/000054694

Lagranja, E. S., Phojanakong, P., Navarro, A. y Valeggia, C. R. (2015). Indigenous populations in transition: an evaluation of metabolic syndrome and its associated factors among the Toba of northern Argentina. Annals of human biology, 42(1), 84–90. https://doi.org/10.3109/03014460.2014.932008

Lande, M. B., Kaczorowski, J. M., Auinger, P., Schwartz, G. J. y Weitzman, M. (2003). Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. The Journal of pediatrics, 143(6), 720–724. https://doi.org/10.1067/S0022-3476(03)00412-8

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. y Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Ma, L., Wang, J. y Li, Y. (2015). Insulin resistance and cognitive dysfunction. Clinica chimica acta; international journal of clinical chemistry, 444, 18–23. https://doi.org/10.1016/j.cca.2015.01.027

Marson, E. C., Delevatti, R. S., Prado, A. K., Netto, N. y Kruel, L. F. (2016). Effects of aerobic, resistance, and combined exercise training on insulin resistance markers in overweight or obese children and adolescents: A systematic review and meta-analysis. Preventive medicine, 93, 211–218. https://doi.org/10.1016/j.ypmed.2016.10.020

McNay, E. C., Ong, C. T., McCrimmon, R. J., Cresswell, J., Bogan, J. S. y Sherwin, R. S. (2010). Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiology of learning and memory, 93(4), 546–553. https://doi.org/10.1016/j.nlm.2010.02.002

Morys, F., Potvin, O., Zeighami, Y., Vogel, J., Lamontagne-Caron, R., Duchesne, S., Dagher, A. y Alzheimer’s Disease Neuroimaging Initiative (2023). Obesity-Associated Neurodegeneration Pattern Mimics Alzheimer's Disease in an Observational Cohort Study. Journal of Alzheimer's disease: JAD, 91(3), 1059–1071. https://doi.org/10.3233/JAD-220535

Nouwen, A., Chambers, A., Chechlacz, M., Higgs, S., Blissett, J., Barrett, T. G. y Allen, H. A. (2017). Microstructural abnormalities in white and gray matter in obese adolescents with and without type 2 diabetes. NeuroImage. Clinical, 16, 43–51. https://doi.org/10.1016/j.nicl.2017.07.004

Oberto, M. G. y Defagó, M. D. (2022). Implicancia de la dieta en la composición y variabilidad de la microbiota intestinal: sus efectos en la obesidad y ansiedad. Pinelatinoamericana, 2(2), 137–152. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38373

Penninx, B. W. J. H. y Lange, S. M. M. (2018). Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. Dialogues in clinical neuroscience, 20(1), 63–73. https://doi.org/10.31887/DCNS.2018.20.1/bpenninx

Peña, S., de la Vega, L., Nuñez, V., Pedemonte, M. y Dubourdieu, M. (2022). El sueño en el personal de salud durante la pandemia SARS-CoV-2 en Uruguay. Enfoque desde la Psiconeuroinmunoendocrinología (PNIE). Pinelatinoamericana, 2(3), 213–224. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/39184

Piché, M. E. y Poirier, P. (2018). Obesity, ectopic fat and cardiac metabolism. Expert review of endocrinology & metabolism, 13(4), 213–221. https://doi.org/10.1080/17446651.2018.1500894

Poroyko, V. A., Carreras, A., Khalyfa, A., Khalyfa, A. A., Leone, V., Peris, E., Almendros, I., Gileles-Hillel, A., Qiao, Z., Hubert, N., Farré, R., Chang, E. B. y Gozal, D. (2016). Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Scientific reports, 6, 35405. https://doi.org/10.1038/srep35405

Pramparo, P., Boissonnet, C. y Schargrodsky, H. (2011). Evaluación del riesgo cardiovascular en siete ciudades de Latinoamérica: las principales conclusiones del estudio CARMELA y de los subestudios. Revista argentina de cardiología, 79(4), 377-382.

Rahman, M. H., Bhusal, A., Lee, W. H., Lee, I. K. y Suk, K. (2018). Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: Translational significance. Biochemical pharmacology, 153, 123–133. https://doi.org/10.1016/j.bcp.2018.01.024

Reynolds, A. N., Akerman, A. P. y Mann, J. (2020). Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS medicine, 17(3), e1003053. https://doi.org/10.1371/journal.pmed.1003053

Rovasio, R. A. (2022). Diálogo entre la tripa y la mente. Pinelatinoamericana, 2(3), 156–170. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38630

Ruegsegger, G. N., Vanderboom, P. M., Dasari, S., Klaus, K. A., Kabiraj, P., McCarthy, C. B., Lucchinetti, C. F. y Nair, K. S. (2019). Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI insight, 4(18), e130681. https://doi.org/10.1172/jci.insight.130681

Schmitt, L. O. y Gaspar, J. M. (2023). Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites, 13(1), 86. https://doi.org/10.3390/metabo13010086

Serrano-Miranda, E. G. (2022). El intestino-microbiota en los ejes reguladores del metabolismo. Pinelatinoamericana, 2(3), 225–239. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38949

Shively, C. A., Appt, S. E., Vitolins, M. Z., Uberseder, B., Michalson, K. T., Silverstein-Metzler, M. G. y Register, T. C. (2019). Mediterranean versus Western Diet Effects on Caloric Intake, Obesity, Metabolism, and Hepatosteatosis in Nonhuman Primates. Obesity (Silver Spring, Md.), 27(5), 777–784. https://doi.org/10.1002/oby.22436

Thaler, J. P., Yi, C. X., Schur, E. A., Guyenet, S. J., Hwang, B. H., Dietrich, M. O., Zhao, X., Sarruf, D. A., Izgur, V., Maravilla, K. R., Nguyen, H. T., Fischer, J. D., Matsen, M. E., Wisse, B. E., Morton, G. J., Horvath, T. L., Baskin, D. G., Tschöp, M. H. y Schwartz, M. W. (2012). Obesity is associated with hypothalamic injury in rodents and humans. The Journal of clinical investigation, 122(1), 153–162. https://doi.org/10.1172/JCI59660

Tucsek, Z., Toth, P., Sosnowska, D., Gautam, T., Mitschelen, M., Koller, A., Szalai, G., Sonntag, W. E., Ungvari, Z. y Csiszar, A. (2014). Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. The journals of gerontology. Series A, Biological sciences and medical sciences, 69(10), 1212–1226. https://doi.org/10.1093/gerona/glt177

van Dijk, D., Balkau, B., Segrestin, B., Gottsäter, M., Gabriel, R., Hatunic, M., Mari, A., Dekker, J. M., Rutters, F. y EGIR-RISC Study Group (2019). Associations between sleep duration and sleep debt with insulin sensitivity and insulin secretion in the EGIR-RISC Study. Diabetes & metabolism, 45(4), 375–381. https://doi.org/10.1016/j.diabet.2018.11.001

Viscogliosi, G., Andreozzi, P., Chiriac, I. M., Cipriani, E., Servello, A., Ettorre, E. y Marigliano, V. (2012). Screening cognition in the elderly with metabolic syndrome. Metabolic syndrome and related disorders, 10(5), 358–362. https://doi.org/10.1089/met.2012.0043

Vizmanos, B., Betancourt-Nuñez, A., Márquez-Sandoval, F., González-Zapata, L. I., Monsalve-Álvarez, J., Bressan, J., de Carvalho Vidigal, F., Figueredo, R., López, L. B., Babio, N. y Salas-Salvadó, J. (2020). Metabolic Syndrome Among Young Health Professionals in the Multicenter Latin America Metabolic Syndrome Study. Metabolic syndrome and related disorders, 18(2), 86–95. https://doi.org/10.1089/met.2019.0086

Wooten, J. S., Breden, M., Hoeg, T. y Smith, B. K. (2022). Effects of weight-loss on adipokines, total and regional body composition and markers of metabolic syndrome in women who are overweight and obese. Endocrine and Metabolic Science, 7–8: 100120. https://doi.org/10.1016/j.endmts.2022.100120

Zhang, M., Chen, J., Yin, Z., Wang, L. y Peng, L. (2021). The association between depression and metabolic syndrome and its components: a bidirectional two-sample Mendelian randomization study. Translational psychiatry, 11(1), 633. https://doi.org/10.1038/s41398-021-01759-z

Zhang, X., Zhang, G., Zhang, H., Karin, M., Bai, H. y Cai, D. (2008). Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell, 135(1), 61–73. https://doi.org/10.1016/j.cell.2008.07.043

Zhao, F., Siu, J. J., Huang, W., Askwith, C. y Cao, L. (2019). Insulin Modulates Excitatory Synaptic Transmission and Synaptic Plasticity in the Mouse Hippocampus. Neuroscience, 411, 237–254. https://doi.org/10.1016/j.neuroscience.2019.05.033

Ziemens, D., Touma, C. y Rappeneau, V. (2022). Neurobiological Mechanisms Modulating Emotionality, Cognition and Reward-Related Behaviour in High-Fat Diet-Fed Rodents. International journal of molecular sciences, 23(14), 7952. https://doi.org/10.3390/ijms23147952

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2023 Pinelatinoamericana

Descargas

Los datos de descargas todavía no están disponibles.