Importancia del análisis de glicoalcaloides (α-solanina y α-chaconina) por consumo de papa en los habitantes prehispánicos de América

Autores/as

  • Roberto Ordoñez-Araque EPN - UNIB.E - UDLA https://orcid.org/0000-0003-2381-9003
  • Carlos Montalvo-Puente Museo Casa del Alabado - IPGH
  • Martha Romero-Bastidas UTE Universidad - INPC
  • Luis Ramos-Guerrero UDLA
  • Paul Vargas-Jentzsch EPN

DOI:

https://doi.org/10.31048/1852.4826.v17.n2.44433

Palabras clave:

Enfermedades, Alimentos, Historia, Cultivo

Resumen

En todo el continente americano, las sociedades precolombinas mostraron prácticas alimentarias diversas; no obstante, diferentes países compartían alimentos comunes. Un ejemplo es la papa, un tubérculo que ha sido un alimento básico en la dieta desde la antigüedad. Las papas contienen glicoalcaloides, una clase de alcaloides que, cuando se ingieren en concentraciones elevadas, pueden plantear riesgos de toxicidad tanto para los seres humanos como para los animales. El objetivo de este estudio es ofrecer una guía sobre glicoalcaloides presentes en papas, y recomendar que se realice investigación de estos compuestos en materiales arqueológicos que fueron destinados para alimentos en todos los países de América. Esta sugerencia surge de la ausencia de estudios de esta naturaleza, particularmente cuando los hallazgos arqueológicos incluyen gránulos de almidón de papa. Se revisaron varias bases de datos para encontrar información histórica sobre la papa e indicar los principales aspectos de la química de los glicoalcaloides relacionados con el tubérculo. Los principales hallazgos indican la importancia que representó la papa en las culturas precolombinas de América, especialmente en las regiones situadas a lo largo de la cordillera de los Andes. La investigación de la composición nutricional reveló que en el tubérculo se pueden encontrar dos glicoalcaloides predominantes: α-solanina y α-chaconina. Se realizó un análisis bibliográfico de estos compuestos tóxicos para comprender su importancia, propiedades químicas, funciones botánicas, metabolismo en el ser humano junto con los posibles problemas de salud, umbrales de toxicidad y las diversas técnicas analíticas disponibles para su detección y cuantificación. La identificación de estas moléculas adquiere importancia en contextos arqueológicos, ya que su presencia puede dar lugar a investigaciones sobre posibles enfermedades prevalentes en la población de la época.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aziz, A., Randhawa, M., Butt, M., Asghar, A., Yasin, M., & Shibamoto, T. (2012). Glycoalkaloids (α-chaconine and α-solanine) contents of selected Pakistani potato cultivars and their dietary intake assessment. Journal of Food Science, 77(3), 58–61. https://doi.org/10.1111/J.1750-3841.2011.02582.X DOI: https://doi.org/10.1111/j.1750-3841.2011.02582.x

Barceloux, D. (2009). Potatoes, tomatoes, and solanine toxicity (Solanum tuberosum L., Solanum lycopersicum L.). Disease-a-Month : DM, 55(6), 391–402. https://doi.org/10.1016/J.DISAMONTH.2009.03.009 DOI: https://doi.org/10.1016/j.disamonth.2009.03.009

Bermejo, A., Pereira, S., Cintra, J., & Morales, G. (2014). Determinación de parámetros químico- físico de las tinturas al 20% obtenidas de las hojas, tallos y frutos de Melia azedarach L (Pursiana). Revista Habanera de Ciencias Médicas, 13(5), 670–680.

Ciofalo, A., Keegan, W., Pateman, M., Pagán-Jiménez, J., & Hofman, C. (2018). Determining precolonial botanical foodways: starch recovery and analysis, Long Island, The Bahamas. Journal of Archaeological Science: Reports, 21, 305–317. https://doi.org/10.1016/J.JASREP.2018.07.022 DOI: https://doi.org/10.1016/j.jasrep.2018.07.022

Crews, C. (2014). Natural Toxicants: Alkaloids. Encyclopedia of Food Safety, 2, 251–260. https://doi.org/10.1016/B978-0-12-378612-8.00175-X DOI: https://doi.org/10.1016/B978-0-12-378612-8.00175-X

Dey, P., Kundu, A., Chakraborty, H., Kar, B., Choi, W., Lee, B., Bhakta, T., Atanasov, A., & Kim, H. (2019). Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. International Journal of Cancer, 145(7), 1731–1744. https://doi.org/10.1002/IJC.31965 DOI: https://doi.org/10.1002/ijc.31965

Friedman, M., & Rasooly, R. (2013). Review of the Inhibition of Biological Activities of Food-Related Selected Toxins by Natural Compounds. Toxins, 5, 743–775. https://doi.org/10.3390/toxins5040743 DOI: https://doi.org/10.3390/toxins5040743

García-Granero, J., Suryanarayan, A., Cubas, M., Craig, O., Cárdenas, M., Ajithprasad, P., & Madella, M. (2022). Integrating Lipid and Starch Grain Analyses From Pottery Vessels to Explore Prehistoric Foodways in Northern Gujarat, India. Frontiers in Ecology and Evolution, 10, 840199. https://doi.org/10.3389/FEVO.2022.840199/BIBTEX DOI: https://doi.org/10.3389/fevo.2022.840199

Gavrilenko, T., Chukhina, I., Antonova, O., Krylova, E., Shipilina, L., Oskina, N., & Kostina, L. (2023). Comparative Analysis of the Genetic Diversity of Chilean Cultivated Potato Based on a Molecular Study of Authentic Herbarium Specimens and Present-Day Gene Bank Accessions. Plants, 12(1). https://doi.org/10.3390/PLANTS12010174/S1 DOI: https://doi.org/10.3390/plants12010174

Ginzberg, I., Tokuhisa, J., & Veilleux, R. (2008). Potato Steroidal Glycoalkaloids: Biosynthesis and Genetic Manipulation. Potato Research 52:1, 52(1), 1–15. https://doi.org/10.1007/S11540-008-9103-4 DOI: https://doi.org/10.1007/s11540-008-9103-4

Haddadin, M., Humeid, M., Qaroot, F., & Robinson, R. (2001). Effect of exposure to light on the solanine content of two varieties of potato (Solanum tuberosum) popular in Jordan. Food Chemistry, 73(2), 205–208. https://doi.org/10.1016/S0308-8146(00)00279-X DOI: https://doi.org/10.1016/S0308-8146(00)00279-X

Idrovo, J. (2002). El formativo en la Sierra Ecuatoriana. In P. Ledergerber -Crespo (Ed.), Formativo en la Sierra Ecuatoriana Jaime Idrovo Urigüen (3era., pp. 114–123). Abya-Yala.

Izawa, K., Amino, Y., Kohmura, M., Ueda, Y., & Kuroda, M. (2010). Human–Environment Interactions – Taste. Comprehensive Natural Products II: Chemistry and Biology, 4, 631–671. https://doi.org/10.1016/B978-008045382-8.00108-8 DOI: https://doi.org/10.1016/B978-008045382-8.00108-8

Jorgensen, K., Garcia, O., Kiyamu, M., Brutsaert, T., & Bigham, A. (2023). Genetic adaptations to potato starch digestion in the Peruvian Andes. American Journal of Biological Anthropology, 180(1), 162–172. https://doi.org/10.1002/AJPA.24656 DOI: https://doi.org/10.1002/ajpa.24656

Kuete, V. (2014). Health Effects of Alkaloids from African Medicinal Plants. Toxicological Survey of African Medicinal Plants, 611–633. https://doi.org/10.1016/B978-0-12-800018-2.00021-2 DOI: https://doi.org/10.1016/B978-0-12-800018-2.00021-2

Kurek, J. (2019). Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life. Alkaloids - Their Importance in Nature and Human Life. https://doi.org/10.5772/INTECHOPEN.85400 DOI: https://doi.org/10.5772/intechopen.85400

Liu, W., Zhang, N., Li, B., Fan, S., Zhao, R., Li, L. P., Wu, G. H., & Zhao, Y. (2014). Determination of α-chaconine and α-solanine in commercial potato crisps by QuEChERS extraction and UPLC-MS/MS. Chemical Papers, 68(11), 1498–1504. https://doi.org/10.2478/S11696-014-0617-8/MACHINEREADABLECITATION/RIS DOI: https://doi.org/10.2478/s11696-014-0617-8

Louderback, L., & Pavlik, B. (2017). Starch granule evidence for the earliest potato use in North America. Proceedings of the National Academy of Sciences of the United States of America, 114(29), 7606–7610. https://doi.org/10.1073/PNAS.1705540114/SUPPL_FILE/PNAS.201705540SI.PDF DOI: https://doi.org/10.1073/pnas.1705540114

Martín, I. (2011). Determinación de glicoalcaloides: α-solanina y α-chaconina en patata mediante cromatografía de líquidos de ultra presión acoplada a espectrometría de masas de triple cuadrupolo. [Universidad de Almería]. http://hdl.handle.net/10835/491

McGehee, D., Krasowski, M., Fung, D., Wilson, B., Gronert, G., & Moss, J. (2000). Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology, 93(2), 510–519. https://doi.org/10.1097/00000542-200008000-00031 DOI: https://doi.org/10.1097/00000542-200008000-00031

McWilliams, M., Blankemeyer, J., & Friedman, M. (2000). The folic acid analogue methotrexate protects frog embryo cell membranes against damage by the potato glycoalkaloid alpha-chaconine. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 38(10), 853–859. https://doi.org/10.1016/S0278-6915(00)00090-9 DOI: https://doi.org/10.1016/S0278-6915(00)00090-9

Melton, M., Biwer, M., & Panjarjian, R. (2020). Differentiating Chuño blanco and Chuño negro in archaeological samples based on starch metrics and morphological attributes. Journal of Archaeological Science: Reports, 34, 102650. https://doi.org/10.1016/J.JASREP.2020.102650 DOI: https://doi.org/10.1016/j.jasrep.2020.102650

Mensinga, T., Sips, A., Rompelberg, C., Van Twillert, K., Meulenbelt, J., Van Den Top, H., & Van Egmond, H. (2005). Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regulatory Toxicology and Pharmacology, 41(1), 66–72. https://doi.org/10.1016/J.YRTPH.2004.09.004 DOI: https://doi.org/10.1016/j.yrtph.2004.09.004

Mesia-Montenegro, C. (2014). El periodo formativo en los andes septentrionales y sus relaciones con los andes centrales. Arqueología y Sociedad, 0(27), 111–130. DOI: https://doi.org/10.15381/arqueolsoc.2014n27.e12198

Molestina, M. (2006). El pensamiento simbólico de los habitantes de La Florida (Quito-Ecuador). Bulletin de l’Institut Français d’études Andines, 35 (3), 377–395. https://doi.org/10.4000/bifea.3931 DOI: https://doi.org/10.4000/bifea.3931

Ni, W., Tian, T., Zhang, L., Li, Z., Wang, L., & Ren, A. (2018). Maternal periconceptional consumption of sprouted potato and risks of neural tube defects and orofacial clefts. Nutrition Journal 2018 17:1, 17(1), 1–8. https://doi.org/10.1186/S12937-018-0420-4 DOI: https://doi.org/10.1186/s12937-018-0420-4

Ordoñez-Araque, R., Ramos-Guerrero, L., Vargas-Jentzsch, P., Romero-Bastidas, M., Rodríguez-Herrera, N., Vallejo-Holguín, R., Fuentes-Gualotuña, C., & Ruales, J. (2024). Fatty Acids and Starch Identification within Minute Archaeological Fragments: Qualitative Investigation for Assessing Feasibility. Foods 13(7), 1090. https://doi.org/10.3390/FOODS13071090 DOI: https://doi.org/10.3390/foods13071090

Ordoñez-Araque, R., Ruales, J., Vargas-Jentzsch, P., Ramos-Guerrero, L., Romero-Bastidas, M., Montalvo-Puente, C., & Serrano-Ayala, S. (2022). Pre-Hispanic Periods and Diet Analysis of the Inhabitants of the Quito Plateau (Ecuador): A Review. Heritage, 5(4), 3446–3462. https://doi.org/10.3390/HERITAGE5040177 DOI: https://doi.org/10.3390/heritage5040177

Pearsall, D. (2003). Plant food resources of the Ecuadorian Formative: an overview and comparison to the Central Andes. In Raymond & L. Burger (Eds.), Archaeology of Formative Ecuador (pp. 213–257). Dumbarton Oaks Research Library and Collection.

Pearsall, D. (2008). Plant Domestication and the Shift to Agriculture in the Andes. In The Handbook of South American Archaeology (pp. 105–120). Springer, New York, NY. https://doi.org/10.1007/978-0-387-74907-5_7 DOI: https://doi.org/10.1007/978-0-387-74907-5_7

Prasad, A., Patel, P., Pandey, S., Niranjan, A., & Misra, P. (2020). Growth and alkaloid production along with expression profiles of biosynthetic pathway genes in two contrasting morphotypes of prickly and prickleless Solanum viarum Dunal. Protoplasma, 257(2), 561–572. https://doi.org/10.1007/S00709-019-01446-3/METRICS DOI: https://doi.org/10.1007/s00709-019-01446-3

Romanucci, V., Pisanti, A., Di Fabio, G., Davinelli, S., Scapagnini, G., Guaragna, A., & Zarrelli, A. (2016). Toxin levels in different variety of potatoes: Alarming contents of α-chaconine. Phytochemistry Letters, 16, 103–107. https://doi.org/10.1016/J.PHYTOL.2016.03.013 DOI: https://doi.org/10.1016/j.phytol.2016.03.013

Rondon, S., Carrillo, C., Cuesta, H., Navarro, P., & Acuña, I. (2022). Latin America potato production: pests and foes. In Insect Pests of Potato: Global Perspectives on Biology and Management (pp. 317–330). Academic Press. https://doi.org/10.1016/B978-0-12-821237-0.00019-6 DOI: https://doi.org/10.1016/B978-0-12-821237-0.00019-6

Rumold, C., & Aldenderfer, M. (2016). Late Archaic-Early Formative period microbotanical evidence for potato at Jiskairumoko in the Titicaca Basin of southern Peru. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13672–13677. https://doi.org/10.1073/PNAS.1604265113/SUPPL_FILE/PNAS.201604265SI.PDF DOI: https://doi.org/10.1073/pnas.1604265113

Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., Mazo, J. del, Hogstrand, C., Hoogenboom, L. (Ron), Leblanc, J., Nebbia, C. S., Nielsen, E., Ntzani, E., Petersen, A., Sand, S., Schwerdtle, T., Vleminckx, C., Wallace, H., Brimer, L., Cottrill, B., Dusemund, B., … Grasl-Kraupp, B. (2020). Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. EFSA Journal, 18(8), 6222. https://doi.org/10.2903/J.EFSA.2020.6222 DOI: https://doi.org/10.2903/j.efsa.2020.6222

Sharma, S., Jaiswal, A., & Jaiswal, S. (2020). Chapter 21 - Potato. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, 339–347. https://doi.org/10.1016/B978-0-12-812780-3.00021-0 DOI: https://doi.org/10.1016/B978-0-12-812780-3.00021-0

Shoji, K., Vásquez S., V. F., & Rosales T., T. E. (2023). Starch grains on human teeth as evidence for 4000 BCE potato consumption at the Cruz Verde site, northern coast of Peru. Journal of Archaeological Science: Reports, 51, 104152. https://doi.org/10.1016/J.JASREP.2023.104152 DOI: https://doi.org/10.1016/j.jasrep.2023.104152

Simões, J. (2008). Evenenamento por glicoalcalóides da batata (solanum tuberosum) em bovinos. Veterinaria, 1–6.

Song, J., Wang, X., Wang, Y., Zhang, Y., & Yu, Y. J. (2020). High-throughput identification of volatile and semi-volatile organic compounds in archaeological samples by gas chromatography–mass spectrometry combined with advanced chemometrics methodology. Microchemical Journal, 158, 105289. https://doi.org/10.1016/J.MICROC.2020.105289 DOI: https://doi.org/10.1016/j.microc.2020.105289

Stoessel, L., Martínez, G., & Constenla, D. (2015). Preliminary analysis of fatty acids recovered from archaeological pottery of the lower course of the Colorado River (North-eastern Patagonia): Contributions to the hunter-gatherers subsistence patterns. Magallania, 43(1), 231–249. https://doi.org/10.4067/s0718-22442015000100013 DOI: https://doi.org/10.4067/S0718-22442015000100013

Urugo, M., & Tringo, T. (2023). Naturally Occurring Plant Food Toxicants and the Role of Food Processing Methods in Their Detoxification. International Journal of Food Science, 2023. https://doi.org/10.1155/2023/9947841 DOI: https://doi.org/10.1155/2023/9947841

Vélez-Terreros, P., & Pilaquinga, F. (2016). Extracción e identificación de la solanina obtenida del fruto de la berenjena (Solanum melongena L.). InfoANALÍTICA, 4(1), 21–32. https://doi.org/10.26807/IA.V4I1.8 DOI: https://doi.org/10.26807/ia.v4i1.8

Villalba, M. (1988). Cotocollao: una aldea formativa del valle de Quito : Vol. Serie Monográfica 2 (Museo del Banco Central del Ecuador, Ed.). Miscelánea antropológica Ecuatoriana.

Yamashoji, S., & Matsuda, T. (2013). Synergistic cytotoxicity induced by α-solanine and α-chaconine. Food Chemistry, 141(2), 669–674. https://doi.org/10.1016/J.FOODCHEM.2013.03.104 DOI: https://doi.org/10.1016/j.foodchem.2013.03.104

Zarins, R., & Kruma, Z. (2017). Glycoalkaloids in potatoes: a review. https://doi.org/10.22616/FOODBALT.2017.002 DOI: https://doi.org/10.22616/foodbalt.2017.002

Zarrillo, S., Gaikwad, N., Lanaud, C., Powis, T., Viot, C., Lesur, I., Fouet, O., Argout, X., Guichoux, E., Salin, F., Solorzano, R. L., Bouchez, O., Vignes, H., Severts, P., Hurtado, J., Yepez, A., Grivetti, L., Blake, M., & Valdez, F. (2018). The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nature Ecology & Evolution, 2(12), 1879–1888. https://doi.org/10.1038/s41559-018-0697-x DOI: https://doi.org/10.1038/s41559-018-0697-x

Zeidler, J. (2008). The Ecuadorian Formative. The Handbook of South American Archaeology, 459–488. https://doi.org/10.1007/978-0-387-74907-5_24 DOI: https://doi.org/10.1007/978-0-387-74907-5_24

Descargas

Publicado

2024-08-28

Cómo citar

Ordoñez-Araque, R., Montalvo-Puente, C., Romero-Bastidas, M., Ramos-Guerrero, L., & Vargas-Jentzsch, P. (2024). Importancia del análisis de glicoalcaloides (α-solanina y α-chaconina) por consumo de papa en los habitantes prehispánicos de América. Revista Del Museo De Antropología, 17(2), 95–104. https://doi.org/10.31048/1852.4826.v17.n2.44433

Número

Sección

Arqueología