Desarrollo de modelos de aprendizaje automático para estimar temperatura del aire utilizando datos MODIS

Contenido principal del artículo

Mónica Bocco

Resumen

La temperatura del aire es una variable clave en una amplia gama de aplicaciones ambientales, que incluyen interacción tierra-atmósfera, cambio climático, modelos de cultivos e hidrológicos, entre otros. El objetivo de este estudio fue estimar las temperaturas máxima y mínima diaria, con datos de temperatura de la superficie terrestre (LST) de MODIS AQUA/TERRA, NDVI, radiación solar extraterrestre y precipitación. Se desarrollaron modelos de redes neuronales artificiales (ANN) y bosques aleatorios (RF) para predecir estas temperaturas considerando estaciones meteorológicas de Córdoba (Argentina) para el período 2018-2020. Los resultados muestran que las metodologías de RF y ANN fueron capaces de modelar relaciones no lineales entre la temperatura registrada y los datos de LST de MODIS, de manera muy robusta. La validación de los modelos confirma que Tmax y Tmin se pueden estimar con precisión utilizando, en conjunto o por separado, AQUA y TERRA LST. Los mejores modelos presentaron coeficientes de determinación iguales a 0,81/0,91 y error cuadrático medio de 2,7/2,1 ºC para Tmax/Tmin, cuando se utilizaron datos de AQUA correspondientes a día/noche, respectivamente. La solidez y el ajuste de los modelos desarrollados, sumado a la libre accesibilidad de datos a escala global, sugieren que esta metodología puede ser aplicada a otras regiones.

Detalles del artículo

Cómo citar
Desarrollo de modelos de aprendizaje automático para estimar temperatura del aire utilizando datos MODIS. (2022). AgriScientia, 39(1), 15-28. https://doi.org/10.31047/1668.298x.v39.n1.33225
Sección
Artículos

Cómo citar

Desarrollo de modelos de aprendizaje automático para estimar temperatura del aire utilizando datos MODIS. (2022). AgriScientia, 39(1), 15-28. https://doi.org/10.31047/1668.298x.v39.n1.33225

Referencias

Aher, P. D., Adinarayana, J., and Gorantiwar, S. D. (2011). Remote Sensing and Artificial Neural Network in Spatial Assessment of Air Temperature in a Semi-arid Watershed. International Journal of Earth Sciences and Engineering, 4(6), 351-354. https://d1wqtxts1xzle7.cloudfront.net/30680999/020410229-with-cover-page-v2.pdf?Expires=1654361918&Signature=egT15fyoyGBtbHxgeRoCZ~s5fqWPV-IJcmIhwV1fDZAOgWLM26nL2rUG~ZRiBLAeDOdZL6ID62X29lASrktIX0I-maORsYqtzgwGivHgNBAaKa63aXTEFog14zM9h8oOPUbjvwyda4PQDqUzGT2ajV76dgMyRYok4G-8EqaQZznFfgO0LiooiacFe9Z-ZMbqem8tpUx4~Qut5H5GOnk4BOk-st5~BzlYArzvscmmGnsa52ReeieHsrFj5chh~6YHy5z5Vj9ALU80ShlRuHZLAj5zFqgdBS9ZU8sfyb9BXsI5aUlsQNklEcAEdDM~MN5BgSLTf6lYTEK58u4l4DzwTg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

Alademomi, A. S., Okolie, C. J., Daramola, O. E., Agboola, R. O., and Salami, T. J. (2020). Assessing the Relationship of LST, NDVI and EVI with Land Cover Changes in the Lagos Lagoon Environment. QuaestionesGeographicae, 39(3), 87-109. https://doi.org/10.2478/quageo-2020-0025

Alfieri, S. M., De Lorenzi, F., Bonfante, A., Basile, A., and Menenti, M. (2012). Mapping Air Temperature by Fourier Analysis of Land Surface Temperature Time Series Observed by TERRA/MODIS. In Proceedings of the 1st EARSeL Workshop on Temporal Analysis of Satellite Images (21-24). Mykonos, Greece. https://www.researchgate.net/profile/Francesca-De-Lorenzi/publication/260979297_Mapping_Air_Temperature_by_Fourier_Analysis_of_Land_Surface_Temperature_time_series_observed_by_TERRAMODIS/links/5cdc2718a6fdccc9ddaebe19/Mapping-Air-Temperature-by-Fourier-Analysis-of-Land-Surface-Temperature-time-series-observed-by-TERRA-MODIS.pdf

Aliaga, V., Ferrelli, F., and Piccolo, M. C. (2017). Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37 (Suppl.1), 1237-1247. https://doi.org/10.1002/joc.5079

Bartkowiak, P., Castelli, M., and Notarnicola, C. (2019). Downscaling Land Surface Temperature from MODIS Dataset with Random Forest Approach over Alpine Vegetated Areas. Remote Sensing, 11(11), 1319. https://doi.org/10.3390/rs11111319

Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A. (2012). Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, 108-121. https://doi.org/10.1016/j.rse.2012.04.024

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324

Chang, Y., Ding, Y., Zhao, Q., and Zhang, S. (2020). A Comprehensive Evaluation of 4-Parameter Diurnal Temperature Cycle Models with In Situ and MODIS LST over Alpine Meadows in the Tibetan Plateau. Remote Sensing, 12(1), 103. https://doi.org/10.3390/rs12010103

Chronopoulos, K. I., Tsiros, I. X., Dimopoulos, I. F., and Alvertos, N. (2008). An application of artificial neural network models to estimate air temperature data in areas with sparse network of meteorological stations. Journal of Environmental Science and Health Part A, 43(14), 1752-1757. https://doi.org/10.1080/10934520802507621

Deery, D., Jimenez-Berni, J., Jones, H., Sirault, X., and Furbank, R. (2014). Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping. Agronomy, 4(3), 349-379. https://doi.org/10.3390/agronomy4030349

Emamifar, S., Rahimikhoob, A., and Noroozi, A. A. (2013). Daily mean air temperature estimation from MODIS land surface temperature products based on M5 model tree. International Journal of Climatology, 33(15), 3174-3181. https://doi.org/10.1002/joc.3655

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R. (2017) Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. Google. https://earthengine.google.com/).

Heck, E., de Beurs, K. M., Owsley, B. C., and Henebry, G. M. (2019). Evaluation of the MODIS collections 5 and 6 for change analysis of vegetation and land surface temperature dynamics in North and South America. ISPRS Journal of Photogrammetry and Remote Sensing, 156, 121-134. https://doi.org/10.1016/j.isprsjprs.2019.07.011

Huang, W. R., Chang, Y. H., and Liu, P. Y. (2018). Assessment of IMERG precipitation over Taiwan at multiple timescales. AtmosphericResearch, 214, 239-249. https://doi.org/10.1016/j.atmosres.2018.08.004

Infraestructura de Datos Espaciales de la Provincia de Córdoba (2019). Mapas Córdoba - Geoportal IDE de la Provincia de Córdoba. Ministerio de Finanzas, Provincia de Córdoba. https://www.mapascordoba.gob.ar/Documentos/METADATOS_LIMITANTES_DE_SUELO.pdf

Janatian, N., Sadeghi, M., Sanaeinejad, S. H., Bakhshian, E., Farid, A., Hasheminia, S. M., and Ghazanfari, S. (2017). A statistical framework for estimating air temperature using MODIS land surface temperature data. International Journal of Climatology, 37(3), 1181-1194. https://doi.org/10.1002/joc.4766

Kamoutsis, A. P., Matsoukis, A. S., and Chronopoulos, K. I. (2013). Air temperature estimation by using artificial neural network models in the greater Athens area, Greece. International Scholarly Research Notices, 2013, 489350. https://doi.org/10.1155/2013/489350

Kärnä, T. and Baptista, A. M. (2016). Evaluation of a long-term hindcast simulation for the Columbia River estuary. Ocean Modelling, 99, 1-14. https://doi.org/10.1016/j.ocemod.2015.12.007

Long, D., Yan, L., Bai, L., Zhang, C., Li, X., Lei, H., Yang, H., Tian, F., Zeng, C., Meng, X., and Shi, C. (2020). Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach. Remote Sensing of Environment, 246, 111863. https://doi.org/10.1016/j.rse.2020.111863

Ministerio de Agricultura y Ganadería (2021). Gestión de Estaciones Meteorológicas Clima. Gobierno de la Provincia de Córdoba. https://newmagya.omixom.com/accounts/login/?next=/

Marzban, F., Conrad, T., Marzban, P., and Sodoudi, S. (2018). Estimation of the Near-Surface Air Temperature during the Day and Nighttime from MODIS in Berlin, Germany. International Journal of Advanced Remote Sensing and GIS, 7(1), 2478-2517. https://doi.org/10.23953/cloud.ijarsg.337

Noi, P. T., Degener, J., and Kappas, M. (2017). Comparison of Multiple Linear Regression, Cubist Regression, and Random Forest Algorithms to Estimate Daily Air Surface Temperature from Dynamic Combinations of MODIS LST Data. Remote Sensing, 9(5), 398. https://doi.org/10.3390/rs9050398

Oyler, J. W., Dobrowski, S. Z., Holden, Z. A., and Running, S. W. (2016). Remotely Sensed Land Skin Temperature as a Spatial Predictor of Air Temperature across the Conterminous United States. Journal of Applied Meteorology and Climatology, 55(7), 1441-1457. https://doi.org/10.1175/JAMC-D-15-0276.1

Sayago, S. and Bocco, M. (2018). Crop yield estimation using satellite images: comparison of linear and non-linear models. AgriScientia, 35(1), 1-9. https://doi.org/10.31047/1668.298x.v1.n35.20447

Sayago, S., Ovando, G., and Bocco, M. (2017). Landsat images and crop model for evaluating water stress of rainfed soybean. Remote Sensing of Environment, 198, 30-39. https://doi.org/10.1016/j.rse.2017.05.008

Sobrino, J. A. and Irakulis, I. (2020). A Methodology for Comparing the Surface Urban Heat Island in Selected Urban Agglomerations Around the World from Sentinel-3 SLSTR Data. Remote Sensing, 12(12), 2052. https://doi.org/10.3390/rs12122052

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. https://doi.org/10.1029/2000JD900719

Trenberth, K. E. and Shea, D. J. (2005). Relationships between precipitation and surface temperature. Geophysical Research Letters, 32(14). https://doi.org/10.1029/2005GL022760

Wehbe, M. B., Seiler, R. A., Vinocur, M. G., and Tarasconi, I. E. (2018). Is It Possible to Completely Adapt Agriculture Production to the Effects of Climate Variability and Change in Central Argentina? New Approaches in Face of New Challenges. In F. Alves et al. (Eds.), Theory and Practice of Climate Adaptation (443-463). Springer, Cham.

Xu, Y., Knudby, A., and Ho, H. C. (2014). Estimating daily maximum air temperature from MODIS in British Columbia, Canada. International Journal of Remote Sensing, 35(24), 8108-8121. https://doi.org/10.1080/01431161.2014.978957

Yang, Y. Z., Cai, W. H., and Yang, J. (2017). Evaluation of MODIS Land Surface Temperature Data to Estimate Near-Surface Air Temperature in Northeast China. Remote Sensing, 9(5), 410. https://doi.org/10.3390/rs9050410

Zeng, L., Wardlow, B. D., Tadesse, T., Shan, J., Hayes, M. J., Li, D., and Xiang, D. (2015). Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US. Remote Sensing, 7(1), 951-970. https://doi.org/10.3390/rs70100951

Zhao, W., Wu, H., Yin, G., and Duan, S. B. (2019). Normalization of the temporal effect on the MODIS land surface temperature product using random forest regression. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 109-118. https://doi.org/10.1016/j.isprsjprs.2019.04.008