Nutrición nitrogenada y tipo de híbrido y su influencia sobre atributos que determinan la aptitud bioenergética de sorgos

Contenido principal del artículo

Marcelo Gustavo Torrecillas
Luis Máximo Bertoia
Leandro Jorge Rey

Resumen

El uso de fuentes de energía renovable está creciendo en el mundo y la búsqueda de biomasa alternativa para la producción de combustible, como el etanol, se ha intensificado. El objetivo de este trabajo fue estudiar el efecto de diferentes dosis de nitrógeno (N) sobre la eficiencia de uso y distintos atributos de la biomasa azucarada y lignocelulósica de cuatro morfotipos (Hib) de sorgo (Sorghum bicolor (L.) Moench). Durante dos campañas se evaluó el rendimiento de azúcar fermentable (RAF), rendimiento teórico de etanol a partir del jugo azucarado (REazu), rendimiento de etanol celulósico (REcel) y la eficiencia de uso de N (EUN) para la producción de materia seca (RMS). Se detectó significancia del efecto año en la mayoría de las variables. La aplicación de N influenció sobre todas las variables estudiadas, excepto azúcares solubles (SST). La interacción N×Hib no influyó significativamente sobre ningún atributo. Los morfotipos sileros se destacaron para RAF, debido a mayores valores de SST. La dosis de 50 N presentó el valor más alto de EUN. Si bien no existieron diferencias significativas entre morfotipos, la productividad de biomasa en morfotipos fotosensitivos fue determinante en la predicción del rendimiento de etanol, tanto a partir de azúcares como celulosa.

Detalles del artículo

Cómo citar
Nutrición nitrogenada y tipo de híbrido y su influencia sobre atributos que determinan la aptitud bioenergética de sorgos. (2018). AgriScientia, 35(2), 1-9. https://doi.org/10.31047/1668.298x.v35.n2.18744
Sección
Artículos
Biografía del autor/a

Marcelo Gustavo Torrecillas, Universidad Nacional de Lomas de Zamora

Cátedra de Manejo de Recursos forrajeros y Cerealicultura. Profesor Adjunto

Cómo citar

Nutrición nitrogenada y tipo de híbrido y su influencia sobre atributos que determinan la aptitud bioenergética de sorgos. (2018). AgriScientia, 35(2), 1-9. https://doi.org/10.31047/1668.298x.v35.n2.18744

Referencias

Bennett, A.S. y Anex, R. P. (2008). Farm-gate production costs of sweet sorghum as a bioethanol feedstock. Trans. ASABE 51, 603-613.

Blumenthal, J. B., Rooney, W. L. y Wang D. (2007). Yield and ethanol production in sorghum genotypes.Agron Abstract [CD-ROM]. ASA, Madison, Wisconsin.

Boudet, A. M. (1998). A new view of lignification.Trends of Plant Science, 3, 67-71. https://doi.org/10.1016/S1360-1385(97)01176-x.

Corn, R. J. (2009).Heterosis and composition of sweet sorghum.PhD. Diss. Soil and Crop Sciences.Texas A&M Univ., College Station. https://http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2009-12-7409/CORN-DISSERTATION.pdf.

Cotton, J., Burow, G., Acosta Martínez,V. y Moore-Kucera J. (2013). Biomass and cellulosic ethanol production of forage sorghum under limited water conditions. Bioenergy Research, 6, 711-718. doi: 10.1007/s12155-012-9285-0.

Dien, B. S., Jung, H. J. G., Vogel, K. P., Casler, M. D., Lamb, J. F. S., Iten, L., Mitchell, R. B. y Sarath, G. (2006). Chemical composition and response to dilute-acid pretreatment and enzimaticsaccharification of alfalfa, reed canarygrass, and switchgrass.Biomass&Bioenergy, 30,880-891. https://doi.org/10.1016/j.biombioe.2006.02.004.

Di Rienzo, J.A.,Casanoves, F., Balzarini, M. G., González, L., Tablada,M. y Robledo, C.W.(2013). InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Argentina.

Erickson, J. E., Woodward, K. R. y Sollenberger, L. E. (2012). Optimizing sweet sorghum production for biofuel in the southeastern USA through nitrogen fertilization and top removal.Bioenergy Research, 5, 86-94. doi: 10.1007/s12155-011-9129-3.

Fageria, N. K. y Baligar, V.C. (2005). Enhancing nitrogen use efficiencyin crop plants.Advances in agronomy, 88, 97-185.

Grenell, J. L. (2014). Yield and carbon exchange of sorghum grown as advanced biofuel feedstock on abandoned agricultural land in southeastern Ohio. Thesis.Ohio Univ. Athens.

Han, K. J., Putnam, W. D., Alison, M. W., Harrell, D. L., Viator, H. P. y McCormick, M. E. (2012). Agronomic considerations for sweet sorghum biofuel production in the south-central USA.BioenergyResearch, 5, 748-758. https://doi.org/10.1007/s12155-012-9185-3.

Holou, R. A. Y. y Stevens, G. (2012). Juice, sugar and bagasse response of sweet sorghum (Sorghum bicolor (L.)Moench cv. M81E) to N fertilization and soil type.GCB Bioenergy, 4, 302-310. doi: 10.1111/j.1757-1707.2011.01126.x.

Houx, J. H., Roberts, C. A. y Fritschi, F. B. (2013). Evaluation of sweet sorghum bagasse as an alternative livestock feed. Crop Science, 53, 1784-1790. doi:10.2135/cropsci2012.03.0190.

Hunter, E. L. y Anderson, I. C. (1997). Sweet sorghum.Horticulture Reviews, 21, 73-104.

Liska, A. J., Yang, H. S., Bremer, V. R., Klopfenstein, T. J., Walters, D. T., Erickson, G. E. y Cassman, K. G. (2009). Improvements in life cycle energy efficiency and greenhouse gas emissions of corn-ethanol. Journalof IndustrialEcology, 13, 58-74. https://doi.org/10.1111/j.1530-9290.2008.00105.x

Maw, M. J. W., Houx III, J. H. y Fritschi, F. B. (2016). Sweet sorghum ethanol yield component response to nitrogen fertilization. Industrial Crops and Products, 84, 43-49. doi: 10.2134/agronj2016.01.0044.

Maw, M. J. W., Houx III, J. H. y Fritschi, F. B. (2017). Nitrogen use efficiency and yield response of high biomass sorghum in the lower Midwest. Agronomy Journal, 109, 1-7. http://dx.doi.org/10.1016/j.indcrop.2016.01.038.

Monk, R. L. y Miller, F. R. (1984). Sorghum improvement for energy production.Biomass, 6, 145-153. https://doi.org/10.1016/0144-4565(84)90017-9.

Monti, A. y Venturi, G. (2003). Comparison of the energy performance of fibre sorghum, sweet sorghum and wheat monocultures in northern Italy.European Journal of Agronomy, 19, 35-43. https://doi.org/10.1016/S1161-0301(02)00017-5.

Oliver, A. L., Pedersen, J. F., Grant, R. J. and Klopfenstein, T. J. (2005). Comparative effects of the sorghum bmr-6 and bmr-12 genes: I Forage sorghum yield and quality. Crop Science, 45, 2234-2239. doi:10.2135/cropsci2004.0644.

Olson, S. N., Ritter, K., Medley, J., Wilson, T., Rooney, W. L. y Mullet, J. E. (2013). Energy sorghum hybrids: Functional dynamics of high nitrogen use efficiency. Biomass & Bioenergy, 56, 307-316. http://dx.doi.org/10.1016/j.biombioe.2013.04.028.

Pedersen, J. F., Vogel, K. P. y Funnell, D. L. (2005). Impact of Reduced Lignin on Plant Fitness.Crop Science, 45, 812–819. doi:10.2135/cropsci2004.0155.

Promkhambut, A., Polthanee, A., Akkasaeng, C. y Younger, A. (2011). Growth, yield and aerenchyma formation of sweet and multipurpose sorghum (Sorghum bicolor L. Moench) as affected by flooding with different growth stages. Australian Journal of Crop Science, 5, 954-965.

Propheter, J. L., Staggenborg, S. A., Wu, X. y Wang, D. (2010). Performance of annual and perennial biofuel crops: Yield during the first two years. Agronomy Journal, 102, 806-814. doi:10.2134/agronj2009.0301.

Ratnavathi, C. V., Suresh, K., Vijay Kumar, B. S., Pallavi, M., Komala, V. V. y Seetharama, N. (2010). Study on genotypic variation for ethanol production from sweet sorghum juice. Biomass & Bioenergy, 34, 947-952. https://doi.org/10.1016/j.biombioe.2010.02.002.

Rocatelli, A. C., Raper, R. L., Balkcom, K. S., Arriaga, F. J. y Bransby, D. I. (2012). Biomass sorghum production and components under different irrigation/tillage systems for the southeastern US.Industrial Crops and Products, 36, 589-598. https://doi.org/10.1016/j.indcrop.2011.11.007.

Rooney, W. L., Blumenthal, J., Bean, B. y Mullet, J. E. (2007).Designing sorghum as a dedicated bioenergy feedstock.Biofuels Bioproducts and Biorefining, 1, 147-157. https://doi.org/10.1002/bbb.15.

Sanderson, M. A., Jones, R. M., Ward, J. y Wolfe, R. (1992). Silage sorghum performance trial at Stephenville. Forage Research in Texas. Rep. PR-5018. Texas Agric. Exp. Stn., Stephenville.

Smith, G.A. yBuxton, D. R. (1993). Temperate zone sweet sorghum ethanol production potential.Bioresource Technology, 43, 71-75. https://doi.org/10.1016/0960-8524(93)90086-Q.

Smith, L. L., Allen, D. J. y Barney, J. N. (2015). Yield potential and stand establishment for 20 candidate bioenergy feedstocks. Biomass&Bioenergy, 73, 145-154. https://doi.org/10.1016/j.biombioe.2014.12.015.

Tamang, P. L., Bronson, K. F., Malapati, A., Schwartz, R., Johnson, J. y Moore-Kucera, J. (2011). Nitrogen requirements for ethanol production from sweet and photoperiod sensitive sorghums in the southern high plains.Agronomy Journal, 103, 431-440. doi: 10.2134/agronj2010.0288.

Torrecillas, M. G., Cantamutto, M. A. y Bertoia, L. M. (2011). Head and stover contribution to digestible dry matter yield on grain and dual-purpose sorghum crop. Australian Journal of Crop Science, 5, 116-122.

Vanderlip, R. L. (1993). How a sorghum plant develops. S3. Department of Agronomy, Kansas State University.

Vogel, K., Pedersen, J., Masterson, S. y Toy, J. (1999). Evaluation of a filter bag system for NDF, and IVDMD forage analysis. CropScience,39, 276-279.

Zhao, Y. L., Dolat, A., Steinberger, Y., Wang, X., Osman, A. y Xie, G. H. (2009). Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel.Field Crops Research, 111, 55-64. doi: 10.1016/j.fcr.2008.10.006.

Zhao, Y. L., Steinberger, Y., Shi, M., Han, L. P. y Xie, G. H. (2012).Changes in stem composition and harvested produce of sweet sorghum during the period from maturity to a sequence of delayed harvest dates.Biomass&Bioenergy, 39, 261-273.doi: 10.1016/j.biombioe.2012.01.020.