Relationships between soil chemical parameters and functional plant groups in fertility islands of the Arid Chaco (Argentina)

Main Article Content

Maria Ester Torres
Rubén Omar Coirini
Ana Marina Contreras
Marcos Sebastián Karlin

Abstract

The “fertility islands” are the result of soil particles, water, nutrients, and biomass accumulation under their canopy. The study of soil and plant parameters in fertility islands is important for the redefinition of management strategies. The hypothesis is that Neltuma flexuosa and Larreadivaricata fertility islands in the Arid Chaco improve soil chemical properties under their canopies affecting the quality and quantity of forage. The objective is to evaluate soil chemical properties on the response of plants in fertility islands. The effect of nurse plants over soil chemical properties and their relation with functional plant groups was studied. Livestock carrying capacity (LCC) significantly increased under the canopy of N. flexuosa. Decreasers were positively related to the N. flexuosa canopy, and negatively to L. divaricata canopy. Soil organic carbon (OC) related positively with decreasers in N. flexuosa islands, but negatively in L. divaricata islands where there seems to exist allelopathy effect. Extractable phosphorus correlated positively with decreasers.

Downloads

Download data is not yet available.

Article Details

How to Cite
Torres, M. E., Coirini, R. O., Contreras, A. M., & Karlin, M. S. (2024). Relationships between soil chemical parameters and functional plant groups in fertility islands of the Arid Chaco (Argentina) . AgriScientia, 40(2), 7–21. https://doi.org/10.31047/1668.298x.v40.n2.40923
Section
Articles

References

Aber, J. D. and Melillo, J. M. (2001). Terrestrial ecosystems. Brooks Cole.

Abril, A., Barttfeld, P. and Bucher, E. H. (2005). The effect of fire and overgrazing disturbes on soil carbon balance in the Dry Chaco forest. Forest Ecology and Management, 206(1-3), 399-405. https://doi.org/10.1016/j.foreco.2004.11.014 DOI: https://doi.org/10.1016/j.foreco.2004.11.014

Abril, A. and Bucher, E. H. (1999). The effects of overgrazing on soil microbial community and fertility in the Chaco dry savannas of Argentina. Applied Soil Ecology, 12(2), 159-167. https://doi.org/10.1016/S0929-1393(98)00162-0 DOI: https://doi.org/10.1016/S0929-1393(98)00162-0

Bakhshi, J., Javadi, S. A., Tavili, A. and Arzani, H. (2020). Study on the effects of different levels of grazing and exclosure on vegetation and soil properties in semi-arid rangelands of Iran. Acta Ecologica Sinica, 40(6), 425-431. https://doi.org/10.1016/j.chnaes.2019.07.003 DOI: https://doi.org/10.1016/j.chnaes.2019.07.003

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A. and Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 180214. https://doi.org/10.1038/sdata.2018.214 DOI: https://doi.org/10.1038/sdata.2018.214

Beegle, D. (2005). Assessing soil phosphorus for crop production by soil testing. In: Sims, T. and Sharpley, A. N. Phosphorus: agriculture and the environment. Agronomy Monograph No. 46 (pp. 123-143). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. https://doi.org/10.2134/agronmonogr46.c5 DOI: https://doi.org/10.2134/agronmonogr46.c5

Bray, R. H. and Kurtz L. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59, 39-45. DOI: https://doi.org/10.1097/00010694-194501000-00006

Carignano, C. A., Kröhling, D., Degiovanni, S. and Cioccale, M. (2014). Geomorfología. In: Relatorio del XIX Congreso Geológico Argentino. Geología de Superficie (pp.747-821).

Carranza, C., Noe, L., Merlo, C., Ledesma, M. and Abril, A. (2012). Efecto del tipo de desmonte sobre la descomposición de pastos nativos e introducidos en el Chaco Árido de la Argentina. RIA. Revista de Investigaciones Agropecuarias, 38(1), 97-107. https://www.redalyc.org/pdf/864/86423614016.pdf

Castillo-Monroy, A. P., Benítez, Á., Reyes-Bueno, F., Donoso, D. A. and Cueva, A. (2016). Biocrust structure responds to soil variables along a tropical scrubland elevation gradient. Journal of Arid Environments, 124, 31-38. https://doi.org/10.1016/j.jaridenv.2015.06.015 DOI: https://doi.org/10.1016/j.jaridenv.2015.06.015

Chidumayo, E. N. (1997). Annual and spatial variation in herbaceous biomass production in a Zambian dry miombo woodland. South African Journal of Botany, 63(2), 74-81. https://doi.org/10.1016/S0254-6299(15)30706-7 DOI: https://doi.org/10.1016/S0254-6299(15)30706-7

Crawley, M. J. (1990). Rabbit grazing, plant competition and seedling recruitment in acid grassland. Journal of Applied Ecology, 27, 803-820. https://doi.org/10.2307/2404378 DOI: https://doi.org/10.2307/2404378

Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M. and Robledo, C. (2020). InfoStat versión (2020). Grupo InfoStat, FCA, Universidad Nacional de Córdoba.

Díaz, R. O. (2007). Utilización de pastizales naturales. Editorial Brujas.

Ding, J. and Eldridge, D. J. (2021). The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant and Soil, 459, 173-183. https://doi.org/10.1007/s11104-020-04731-w DOI: https://doi.org/10.1007/s11104-020-04731-w

Dohn, J., Dembélé, F., Karembé, M., Moustakas, A., Amévor, K. A. and Hanan, N. P. (2013). Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. Journal of Ecology, 101(1), 202-209. https://doi.org/10.1111/1365-2745.12010 DOI: https://doi.org/10.1111/1365-2745.12010

Dyksterhuis, E. J. (1949). Condition and management of range land based on quantitative ecology. Journal of Range Management Archives, 2(3), 104-115. https://journals.uair.arizona.edu/index.php/jrm/article/viewFile/4330/3941 DOI: https://doi.org/10.2307/3893680

Ebeling, A. M., Bundy, L. G., Kittell, A. W. and Ebeling, D. D. (2008). Evaluating the Bray P1 test on alkaline, calcareous soils. Soil Science Society of America Journal, 72(4), 985-991. https://doi.org/10.2136/sssaj2006.0347 DOI: https://doi.org/10.2136/sssaj2006.0347

Gao, Y., Tariq, A., Zeng, F., Sardans, J., Peñuelas, J., Zhang, Z. and Xu, M. (2022). “Fertile islands” beneath three desert vegetation on soil phosphorus fractions, enzymatic activities, and microbial biomass in the desert-oasis transition zone. Catena, 212, 106090. https://doi.org/10.1016/j.catena.2022.106090 DOI: https://doi.org/10.1016/j.catena.2022.106090

Hang, S. B., Negro, G. J., Becerra, M. A., and Rampoldi, E. A. (2015). Suelos de Córdoba. Variabilidad de las propiedades del horizonte superficial. FCA, Universidad Nacional de Córdoba.

Karlin, M. S. (2012). Cambios temporales del clima en la subregión del Chaco Árido. Multequina, 21, 3-16. https://www.redalyc.org/pdf/428/42825278001.pdf

Karlin, M. S. (2013). Relaciones suelo-planta en el ecosistema Salinas Grandes, Provincia de Catamarca (Argentina). [Tesis Doctoral]. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba. https://rdu.unc.edu.ar/handle/11086/1564

Karlin, M. S., Bernasconi Salazar, J., Cora, A., Sánchez, S. Arnulphi, S. and Accietto, R. (2019). Cambios en el uso del suelo: capacidad de infiltración en el centro de Córdoba (Argentina). Ciencia del Suelo, 37(2), 196-208. http://www.ojs.suelos.org.ar/index.php/cds/article/view/435/245

Karlin, M. S., Coirini, R., Ringuelet, A., Salazar, J. B., Cora, A., Contreras, A., Bravo, M. B. and Buffa, E. (2021). Evaluación biofísica de islas de fertilidad en el Chaco Árido (Argentina). AgriScientia, 38(1), 1-13. https://doi.org/10.31047/1668.298x.v38.n1.30529 DOI: https://doi.org/10.31047/1668.298x.v38.n1.30529

Karlin, M., Galán, R., Contreras, A., Zapata, R., Coirini, R. and Ruiz Posse, E. (2013). Exergetic model of secondary successions for plant communities in the Arid Chaco (Argentina). International Scholarly Research Notices, 2013, 945190. http://doi.org/10.1155/2013/945190

Karlin, M. S., Karlin, U. O, Coirini, R. O., Reati, G. J. and Zapata, R. M. (2013). El Chaco Árido. Editorial Encuentro. DOI: https://doi.org/10.1155/2013/945190

Karlin, M. S., Zapata, R. M. and Coirini, R. O. (2021). Soil organic carbon and dead biomass pools in woodlands from Monte region (Argentina). Bosque, 42(1), 67-79. https://www.revistabosque.org/index.php/bosque/article/view/236 DOI: https://doi.org/10.4067/S0717-92002021000100067

Kremers, J. and Boosten, M. (2018). Soil compaction and deformation in forest exploitation. American Journal for Alternative Agriculture, 7(1-2), 25-31. https://www.starobv.nl/wp-content/uploads/2020/02/Rap2018_soil_compaction_and_deformation_in_forest_exploitation.pdf

Lei, S. A. (2010). Benefits and costs of vegetative and sexual reproduction in perennial plants: a review of literature. Journal of the Arizona-Nevada Academy of Science, 42(1), 9-14. https://doi.org/10.2181/036.042.0103 DOI: https://doi.org/10.2181/036.042.0103

Mahall, B. E. and Callaway, R. M. (1991). Root communication among desert shrubs. Proceedings of the National Academy of Sciences, 88(3), 874-876. https://doi.org/10.1073/pnas.88.3.874 DOI: https://doi.org/10.1073/pnas.88.3.874

Martino, R. D., Guereschi, A. B., Carignano, C. A., Sfragulla, J. A. and Bonalumi, A. A. (2020). Mapa geológico de la Provincia de Córdoba. Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales. https://repositorio.segemar.gov.ar/handle/308849217/4117

Mustapha, A. A., Abdulrahman, B. L., Dawaki, M. U. and Usman, A. (2022). Comparative determination of available phosphorus at different pH levels in Nigerian Savannah soils using Mehlich, Olsen and Bray Methods. Nigerian Journal of Soil Environmental Research, 21, 69-77.

Naldini, M. B., Harguindeguy, N. P. and Kowaljow, E. (2021). Soil carbon release enhanced by increased litter input in a degraded semi-arid forest soil. Journal of Arid Environments, 186, 104400. https://doi.org/10.1016/j.jaridenv.2020.104400 DOI: https://doi.org/10.1016/j.jaridenv.2020.104400

Nelson, D. and Sommers, L. (1996). Total carbon, organic carbon and organic matter. In: Sparks, D. L. (Ed.). Methods of Soil Analysis Part 3. Chemical Methods (pp. 961-1010). ASA SSSA CSSA. DOI: https://doi.org/10.2136/sssabookser5.3.c34

Ochoa-Hueso, R, Hernandez, R., Pueyo, J., Manrique, E. (2011). Spatial distribution and physiology of biological soil crusts from semi-arid central Spain are related to soil chemistry and shrub cover. Soil Biology and Biochemistry, 43(9), 1894-1901. https://doi.org/10.1016/j.soilbio.2011.05.010 DOI: https://doi.org/10.1016/j.soilbio.2011.05.010

Passera, C. B., and Borsetto, O. (1986). Determinación “Índice de Calidad Específico”. In: Subcomité Asesor del Árido Subtropical Argentino (Ed.). Taller de arbustos forrajeros para zonas áridas y semiáridas (pp. 80-88). Orientación Gráfica.

Passera, C. B., Dalmasso, A. D. and Borsetto, O. (1986). Método de Point Quadrat Modificado. In: Subcomité Asesor del Árido Subtropical Argentino (Ed.). Taller de arbustos forrajeros para zonas áridas y semiáridas (pp. 71-79). Orientación gráfica.

Potsch, S., and Arens, K. (1949). Sôbre a ecologia da Selaginella sellowii Hieron. Lilloa, 20, 89-104. https://www.lillo.org.ar/journals/index.php/lilloa/article/view/1426

Qu, L., Wang, Z., Huang, Y., Zhang, Y., Song, C. and Ma, K. (2018). Effects of plant coverage on shrub fertility islands in the Upper Minjiang River Valley. Science China Life Sciences, 61, 340-347. https://doi.org/10.1007/s11427-017-9144-9 DOI: https://doi.org/10.1007/s11427-017-9144-9

Ridolfi, L., Laio, F. and D’Odorico, P. (2008). Fertility island formation and evolution in dryland ecosystems. Ecology and Society, 13(1), 5. https://www.jstor.org/stable/26267910 DOI: https://doi.org/10.5751/ES-02302-130105

Riginos, C., Grace, J. B., Augustine, D. J. and Young, T. P. (2009). Local versus landscape-scale effects of savanna trees on grasses. Journal of Ecology, 97(6), 1337-1345. https://doi.org/10.1111/j.1365-2745.2009.01563.x DOI: https://doi.org/10.1111/j.1365-2745.2009.01563.x

Roos, P. C. and Allsopp, N. (1997). Soil nutrient ecology associated with Acacia sieberiana at different tree densities in a South African savanna. African Journal of Range & Forage Science, 14(2), 39-44. https://doi.org/10.1080/10220119.1997.9647918 DOI: https://doi.org/10.1080/10220119.1997.9647918

Rossi, B. E. and Villagra, P. E. (2003). Effects of Prosopis flexuosa on soil properties and the spatial pattern of understorey species in arid Argentina. Journal of Vegetation Science, 14(4), 543-550. https://doi.org/10.1111/j.1654-1103.2003.tb02181.x DOI: https://doi.org/10.1111/j.1654-1103.2003.tb02181.x

Schafer, J. L., Mudrak, E. L., Haines, C. E., Parag, H. A., Moloney, K. A. and Holzapfel, C. (2012). The association of native and non-native annual plants with Larrea tridentata (creosote bush) in the Mojave and Sonoran Deserts. Journal of Arid Environments, 87, 129-135. https://doi.org/10.1016/j.jaridenv.2012.07.013 DOI: https://doi.org/10.1016/j.jaridenv.2012.07.013

Sims, J. T. (2000). Soil test phosphorus: Bray and Kurtz P-1. In: Pierzynski, G. M. Methods of phosphorus analysis for soils, sediments, residuals, and waters. Southern Cooperative Series Bulletin No. 396 (pp. 13-14). North Carolina State University.

Teich, I., Cingolani, A. M., Renison, D., Hensen, I. and Giorgis, M. A. (2005). Do domestic herbivores retard Polylepis australis Bitt. woodland recovery in the mountains of Córdoba, Argentina? Forest Ecology and Management, 219(2-3), 229-241. https://doi.org/10.1016/j.foreco.2005.08.048 DOI: https://doi.org/10.1016/j.foreco.2005.08.048

Thompson, D. B., Walker, L. R., Landau, F. H. and Stark, L. R. (2005). The influence of elevation, shrub species, and biological soil crust on fertility islands in the Mojave Desert, USA. Journal of Arid Environments, 61(4), 609-629. https://doi.org/10.1016/j.jaridenv.2004.09.013 DOI: https://doi.org/10.1016/j.jaridenv.2004.09.013

Tongway, D. J. and Ludwig, J. A. (2005). Heterogeneity in arid and semiarid lands. In: Lovett, G. M., Jones, C., Turner, M. G., and Weathers, K. C. (Eds.) Ecosystem function in heterogeneous landscapes (pp. 189-205). Springer. https://doi.org/10.1007/0-387-24091-8_10 DOI: https://doi.org/10.1007/0-387-24091-8_10

United Nations Convention to Combat Desertification (UNCCD). (2015). Integration of the sustainable development goals and targets into the implementation of the United Nations Convention to Combat Desertification and the Intergovernmental Working Group report on land degradation neutrality. Decision 3/COP.12. Report of the Conference of the Parties on Its Twelfth Session, Held in Ankara from 12 to 23 October 2015. https://www.unccd.int/official-documentscop-12-ankara-2015/3cop12

Varela, O., Varas, M., Rattalino, D., Crabbè, F. and Ordano, M. (2017). Ameliorative effects of nurse shrubs on soil chemical characteristics are driven by plant size in the Monte Desert. Arid Land Research and Management, 31(4), 418-430. https://doi.org/10.1080/15324982.2017.1340359 DOI: https://doi.org/10.1080/15324982.2017.1340359

Villagra, P. E., Giordano, C., Alvarez, J. A., Bruno Cavagnaro, J., Guevara, A., Sartor, C., Passera, C. B. and Greco, S. (2011). Ser planta en el desierto: estrategias de uso de agua y resistencia al estrés hídrico en el Monte Central de Argentina. Ecología Austral, 21(1), 29-42. https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1294

Ward, D., Trinogga, J., Wiegand, K., du Toit, J., Okubamichael, D., Reinsch, S. and Schleicher, J. (2018). Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma, 310, 153-162. https://doi.org/10.1016/j.geoderma.2017.09.023 DOI: https://doi.org/10.1016/j.geoderma.2017.09.023

Wood, M. H., and Carvalho, P. C. de F. (2000). Defoliation patterns and herbage intake on pastures. In: Lemaire, G., Hodgson, J., Moraes, A. D., Carvalho, P. D. F. and Nabinger, C. Grassland ecophysiology and grazing ecology. CABI Publishing.

Zarekia, S., Jafari, M., Arzani, H., Javadi, S. A. and Jafari, A. A. (2012). Grazing effects on some of the physical and chemical properties of soil. World Applied Sciences Journal, 20(2), 205-212.